
Understanding Liquid Types,

Contracts and Formal

Verification with Ada/SPARK
Fernando Oleo Blanco -/- Irvise

https://irvise.xyz/
https://github.com/Irvise

2 / 17

Topics and objectives

Explain liquid types, contracts and

proves…

…in a practical and easy manner

Concepts will be universal (Haskell,

Idris 2, The Rocq Prover, Frama-C, ML,

F*, Lean4, Agda, ATS, Isabelle, TLA+)

https://ucsd-progsys.github.io/liquidhaskell/
https://github.com/idris-lang/Idris2
https://rocq-prover.org/about
https://frama-c.com/
https://ocaml.org/
https://fstar-lang.org/
https://lean-lang.org/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://www.cs.bu.edu/~hwxi/atslangweb/
https://isabelle.in.tum.de/
https://lamport.azurewebsites.net/tla/tla.html

2 / 17

Topics and objectives

Explain liquid types, contracts and

proves…

…in a practical and easy manner

Concepts will be universal (Haskell,

Idris 2, The Rocq Prover, Frama-C, ML,

F*, Lean4, Agda, ATS, Isabelle, TLA+)

Showcase Ada/SPARK

Little to no syntax will be explained

Only simple examples will be shown

Everything is valid… Ada 2012

https://ucsd-progsys.github.io/liquidhaskell/
https://github.com/idris-lang/Idris2
https://rocq-prover.org/about
https://frama-c.com/
https://ocaml.org/
https://fstar-lang.org/
https://lean-lang.org/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://www.cs.bu.edu/~hwxi/atslangweb/
https://isabelle.in.tum.de/
https://lamport.azurewebsites.net/tla/tla.html

3 / 17

Types!

Computer/CPU/Memory-based information

Or in newer Programming languages (Zig , Rust , Jai)

Traditionally…

int, float, char...

struct, union, void, nullptr

int *, int*, []

u8, f64, f16...

https://ziglang.org/
https://www.rust-lang.org/
https://github-wiki-see.page/m/Jai-Community/Jai-Community-Library/wiki/Getting-Started

3 / 17

Types!

Computer/CPU/Memory-based information

Or in newer Programming languages (Zig , Rust , Jai)

Newer types focus on program flow and convey meaning, such as Rust’s

Modern types are used to transmit real world meaning. But…

Traditionally…

int, float, char...

struct, union, void, nullptr

int *, int*, []

u8, f64, f16...

Optional<T> -> Some<T> or None // See also Result<V, E>

https://ziglang.org/
https://www.rust-lang.org/
https://github-wiki-see.page/m/Jai-Community/Jai-Community-Library/wiki/Getting-Started

3 / 17

Types!

Computer/CPU/Memory-based information

Or in newer Programming languages (Zig , Rust , Jai)

Newer types focus on program flow and convey meaning, such as Rust’s

Modern types are used to transmit real world meaning. But…

Is this a passing test grade? let Grade: u8 = 11;

Traditionally…

int, float, char...

struct, union, void, nullptr

int *, int*, []

u8, f64, f16...

Optional<T> -> Some<T> or None // See also Result<V, E>

https://ziglang.org/
https://www.rust-lang.org/
https://github-wiki-see.page/m/Jai-Community/Jai-Community-Library/wiki/Getting-Started

4 / 17

Ada’s Type System (fully abridged)

type Grade is range 0 .. 10; -- This is a Natural (Unsigned_Integer)

subtype Fail_Grade is Grade range 0 .. 4; -- Fully compatible with parent

4 / 17

Ada’s Type System (fully abridged)

type Better_Grade is delta 0.01 range 0.0 .. 10.0; -- Fixed point types FTW!

subtype Fail_Grade_V2 is Better_Grade range 0.0 .. 4.99;

4 / 17

Ada’s Type System (fully abridged)

type Better_Grade is delta 0.01 range 0.0 .. 10.0; -- Fixed point types FTW!

subtype Fail_Grade_V2 is Better_Grade range 0.0 .. 4.99;

-- Example

Failed : constant Boolean := 3.38 in Fail_Grade_V2; -- Returns True

4 / 17

Ada’s Type System (fully abridged)

Ada focuses on modelling real world data, the compiler does the heavy lifting

Play around with Ada in Compiler Explorer

type Better_Grade is delta 0.01 range 0.0 .. 10.0; -- Fixed point types FTW!

subtype Fail_Grade_V2 is Better_Grade range 0.0 .. 4.99;

-- Example

Failed : constant Boolean := 3.38 in Fail_Grade_V2; -- Returns True

https://godbolt.org/z/c3h4TcqdK

4 / 17

Ada’s Type System (fully abridged)

Ada focuses on modelling real world data, the compiler does the heavy lifting

Play around with Ada in Compiler Explorer

What about more complex pieces of information?

Even numbers? 2, 4, 6, 8...

Prime numbers? 2, 3, 5, 7, 11...

type Better_Grade is delta 0.01 range 0.0 .. 10.0; -- Fixed point types FTW!

subtype Fail_Grade_V2 is Better_Grade range 0.0 .. 4.99;

-- Example

Failed : constant Boolean := 3.38 in Fail_Grade_V2; -- Returns True

https://godbolt.org/z/c3h4TcqdK

4 / 17

Ada’s Type System (fully abridged)

Ada focuses on modelling real world data, the compiler does the heavy lifting

Play around with Ada in Compiler Explorer

What about more complex pieces of information?

Even numbers? 2, 4, 6, 8...

Prime numbers? 2, 3, 5, 7, 11...

Can we express the properties of data… as part of the type?

Even numbers are (all the positive integer numbers) divisible by two

Prime numbers are (all the positive integer numbers) which are only divisible by one and themselves

type Better_Grade is delta 0.01 range 0.0 .. 10.0; -- Fixed point types FTW!

subtype Fail_Grade_V2 is Better_Grade range 0.0 .. 4.99;

-- Example

Failed : constant Boolean := 3.38 in Fail_Grade_V2; -- Returns True

https://godbolt.org/z/c3h4TcqdK

5 / 17

Liquid types!
Logically Qualified Types, aka, Types with Logic! Aka dependent types, etc…

5 / 17

Liquid types!

Lets express the logic/properties/etc as part of the type definition!

Logically Qualified Types, aka, Types with Logic! Aka dependent types, etc…

subtype Even is Natural...

subtype Odd is Natural...

5 / 17

Liquid types!

Lets express the logic/properties/etc as part of the type definition!

Logically Qualified Types, aka, Types with Logic! Aka dependent types, etc…

subtype Even is Natural with

Dynamic_Predicate => Even mod 2 = 0;

subtype Odd is Natural with

Dynamic_Predicate => Odd mod 2 = 1;

5 / 17

Liquid types!

Lets express the logic/properties/etc as part of the type definition!

Logically Qualified Types, aka, Types with Logic! Aka dependent types, etc…

My_Even_Var : Even := 2; -- Ok

Not_My_Even_Var : Even := 3; -- Not Ok! Compile with `-gnata` for runtime checks!

Is_Even : Boolean := 3 in Even; -- False

5 / 17

Liquid types!

Lets express the logic/properties/etc as part of the type definition!

And what about primes?

Logically Qualified Types, aka, Types with Logic! Aka dependent types, etc…

My_Even_Var : Even := 2; -- Ok

Not_My_Even_Var : Even := 3; -- Not Ok! Compile with `-gnata` for runtime checks!

Is_Even : Boolean := 3 in Even; -- False

type Prime is new Positive with

Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

5 / 17

Liquid types!

Lets express the logic/properties/etc as part of the type definition!

And what about primes?

We can even use arbitrarily complex* functions in the predicate!

For more information see SPARK’s User Manual on Type Contracts

Logically Qualified Types, aka, Types with Logic! Aka dependent types, etc…

My_Even_Var : Even := 2; -- Ok

Not_My_Even_Var : Even := 3; -- Not Ok! Compile with `-gnata` for runtime checks!

Is_Even : Boolean := 3 in Even; -- False

type Prime is new Positive with

Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

https://docs.adacore.com/spark2014-docs/html/ug/en/source/type_contracts.html

5 / 17

Liquid types!

Lets express the logic/properties/etc as part of the type definition!

And what about primes?

We can even use arbitrarily complex* functions in the predicate!

For more information see SPARK’s User Manual on Type Contracts

Boooooo!!!
Too academic and maths heavy! It is not useful in the real world!

Logically Qualified Types, aka, Types with Logic! Aka dependent types, etc…

My_Even_Var : Even := 2; -- Ok

Not_My_Even_Var : Even := 3; -- Not Ok! Compile with `-gnata` for runtime checks!

Is_Even : Boolean := 3 in Even; -- False

type Prime is new Positive with

Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

https://docs.adacore.com/spark2014-docs/html/ug/en/source/type_contracts.html

6 / 17

A realistic case for liquid types
We have some measurement equipment (or maybe we are a high speed trading company)

type Day_Temperature is record

High, Current, Low : Temperature;

end record;

Garden : Day_Temperature;

-- Somewher in the code...

Garden.Current := Get_Temperature("Garden");

-- ...and we move on

6 / 17

A realistic case for liquid types
We have some measurement equipment (or maybe we are a high speed trading company)

type Day_Temperature is record

High, Current, Low : Temperature;

end record;

Garden : Day_Temperature;

-- Somewher in the code...

Garden.Current := Get_Temperature("Garden"); -- Bug! We forgot to potentially update High and Low!!

-- ...we get a silent data corruption error >:(

6 / 17

A realistic case for liquid types
We have some measurement equipment (or maybe we are a high speed trading company)

type Day_Temperature is record

High, Current, Low : Temperature;

end record

with Dynamic_Predicate => Day_Temperature.High >= Day_Temperature.Current and then

Day_Temperature.Current >= Day_Temperature.Low;

Garden : Day_Temperature;

-- Somewher in the code...

Garden.Current := Get_Temperature("Garden"); -- Runtime error!

-- ...we get a runtime exception (compile with -gnata) :/

6 / 17

A realistic case for liquid types

An array that is supposed to be sorted vs. one that actually is!

We have some measurement equipment (or maybe we are a high speed trading company)

type Day_Temperature is record

High, Current, Low : Temperature;

end record

with Dynamic_Predicate => Day_Temperature.High >= Day_Temperature.Current and then

Day_Temperature.Current >= Day_Temperature.Low;

Garden : Day_Temperature;

-- Somewher in the code...

Garden.Current := Get_Temperature("Garden"); -- Runtime error!

-- ...we get a runtime exception (compile with -gnata) :/

type Should_Be_Sorted is array (Index) of Integer; -- Are we sure it is sorted?

type Increasing_Ordered_Array is array (Index) of Integer

with Dynamic_Predicate =>

(for all I in Index => (if I < Index'Last then Ordered_Array(I) < Ordered_Array(I+1))); -- Nice!

7 / 17

Boooo, we can already do all of this since the 80s!
OOP example of a getter-setter pattern

class Garden_Day_Temperature {

private:

 Day_Temperature Garden_Temp;

public:

 float set(float Temperature) {

 ... // We make sure that this will be correct

 }

 float get() {

 }

};

7 / 17

Boooo, we can already do all of this since the 80s!

Indeed but…

OOP is a whole programming paradigm, hides data (private), requires opaque API (set , get , etc)

Just Types, Documentation (intent and meaning), Debugging/Instrumentation, Formal Verification

OOP and liquid types can complement each other

See limited keyword of Ada ;)

OOP example of a getter-setter pattern

class Garden_Day_Temperature {

private:

 Day_Temperature Garden_Temp;

public:

 float set(float Temperature) {

 ... // We make sure that this will be correct

 }

 float get() {

 }

};

8 / 17

(Functional) Contracts

Programs take inputs, process them and generate outputs

Liquid/dependent types focus on data. Contracts focus on the execution of code

8 / 17

(Functional) Contracts

Programs take inputs, process them and generate outputs

Input A

Input B

Input C

Program
(Functions &
Procedures)

Output 1

Output 2

Liquid/dependent types focus on data. Contracts focus on the execution of code

8 / 17

(Functional) Contracts

Programs take inputs, process them and generate outputs

Liquid Types

Liquid Types

Input A

Input B

Input C

Program
(Functions &
Procedures)

Output 1

Output 2

Liquid/dependent types focus on data. Contracts focus on the execution of code

8 / 17

(Functional) Contracts

Programs take inputs, process them and generate outputs

Liquid Types

Contracts
Liquid Types

Input A

Input B

Input C

Program
(Functions &
Procedures)

Output 1

Output 2

Liquid/dependent types focus on data. Contracts focus on the execution of code

9 / 17

Making sure functions do what we expect them to do
Adding meaning to the executable side of things

package Stack is

procedure Push (V : Character);

procedure Pop (V : out Character);

procedure Clear;

function Top return Character;

function Full return Boolean is (Last = Max_Size);

function Empty return Boolean is (Last < 1);

function Size return Integer is (Last);

end Stack;

9 / 17

Making sure functions do what we expect them to do
Adding meaning to the executable side of things

package Stack is

procedure Push (V : Character); -- What if the Stak is full!?

procedure Pop (V : out Character); -- What if the Stak is empty!?

procedure Clear; -- Did we implement this correctly?

function Top return Character; -- Did we implement this correctly?

function Full return Boolean is (Last = Max_Size);

function Empty return Boolean is (Last < 1);

function Size return Integer is (Last);

end Stack;

9 / 17

Making sure functions do what we expect them to do
Adding meaning to the executable side of things

package body Stack is

procedure Push (V : Character) is

begin

if Full then

raise Stack_Overflow with "Do not push data when Stack if full >:(!";

end if;

-- ...

end Push;

-- ...

end Stack;

9 / 17

Making sure functions do what we expect them to do
Adding meaning to the executable side of things

package Stack with SPARK_Mode => On is

procedure Push (V : Character)

with Pre => not Full, -- No need to check in the body

Post => Size = Size'Old + 1; -- Whatever the implementation is, this must hold

procedure Pop (V : out Character)

with Pre => not Empty, -- No need to check in the body

Post => Size = Size'Old - 1; -- Whatever the implementation is, this must hold

procedure Clear

with Post => Size = 0; -- Whatever the implementation is, this must hold

function Top return Character

with Post => Top'Result = Tab(Last); -- Whatever the implementation is, this must hold

function Full return Boolean is (Last = Max_Size);

function Empty return Boolean is (Last < 1);

function Size return Integer is (Last);

end Stack;

10 / 17

A couple of real world examples

-- From spark-containers-formal-vectors.ads

procedure Move (Target : in out Vector; Source : in out Vector)

with

Global => null,

Pre => Length (Source) <= Capacity (Target),

Post => Model (Target) = Model (Source)'Old and Length (Source) = 0;

10 / 17

A couple of real world examples

-- From spark-containers-formal-vectors.ads

procedure Move (Target : in out Vector; Source : in out Vector)

with

-- We do not know how this is implemented...

Global => null, -- but this function does not depend on any global state,

Pre => Length (Source) <= Capacity (Target),

-- there will be no buffer overflows

Post => Model (Target) = Model (Source)'Old and Length (Source) = 0;

-- and that the "Source" is emptied and no data can be lost

10 / 17

A couple of real world examples

procedure Insert -- From spark-containers-formal-unbounded_vectors.ads

(Container : in out Vector;

Before : Extended_Index;

New_Item : Element_Type)

with Global => null, Pre => Length (Container) < Capacity (Container)

and then Before in Index_Type'First .. Last_Index (Container) + 1,

Post => Length (Container) = Length (Container)'Old + 1

and M.Range_Equal -- Elements located before Before in Container are preserved

(Left => Model (Container)'Old,

Right => Model (Container),

Fst => Index_Type'First,

Lst => Before - 1)

and Element_Logic_Equal -- Container now has New_Item at index Before

(Element (Model (Container), Before), M.Copy_Element (New_Item))

and M.Range_Shifted -- Elements located after Before in Container are shifted by 1

(Left => Model (Container)'Old,

Right => Model (Container),

Fst => Before,

Lst => Last_Index (Container)'Old,

Offset => 1);

11 / 17

Formal verification of software

Can we be sure that our code

is correct?
1. Correct the way we expect it to be (implicit

behaviour)

2. Correct the way we wrote it to be (design)

3. Correct the way someone wants it to be

(specification)

Making sure that things work as expected… even before we compile/run them!

11 / 17

Formal verification of software

Can we be sure that our code

is correct?
1. Correct the way we expect it to be (implicit

behaviour)

2. Correct the way we wrote it to be (design)

3. Correct the way someone wants it to be

(specification)

Can we trust our code to not

have issues/bugs?
No memory errors (think of Rust’s borrow checker)

No program flow errors (forgetting to check a

state)

No unexpected arithmetic issues (over/underflows,

division by zero)

No type contracts (liquid types) errors

No functional contracts errors

No concurrency/parallel errors (data races)

No incorrect handling of exceptions

No runtime errors

Making sure that things work as expected… even before we compile/run them!

https://rustc-dev-guide.rust-lang.org/borrow_check.html

12 / 17

Provers

Software that takes a program as an input and analyse
Static code analysis: the proof takes place before the program has even been run!

Some provers are better at some things than others

Rust focuses mostly in memory correctness

TLA+ is widely used for concurrency and parallelism analysis

Some provers are automatic (hands off), such as SPARK. Others are interactive, such as Rocq

Some allow for customization of the prove

unsafe in Rust or SPARK_Mode and --level=[1 .. 4] in SPARK

Not all provers produce an executable

Ada/SPARK is compiled…

…but the provers (Z3, Alt-Ergo, CVC5…) are just used for checking

https://www.rust-lang.org/
https://lamport.azurewebsites.net/tla/tla.html
https://docs.adacore.com/spark2014-docs/html/ug/index.html
https://rocq-prover.org/
https://github.com/Z3Prover/z3
https://alt-ergo.ocamlpro.com/
https://cvc5.github.io/

13 / 17

But are these things actually used in real projects?!

Muen Separation Microkernel

Linux VM
Subject
Monitor
(native)

Time
(native)

VT
(native)

Muen Separation Kernel

1. Formally verified in SPARK (and its components

and drivers too!)

2. Used in telecomunication devices and cryptographic

hardware (source)

3. Open source! (of course…)

Some examples of Ada/SPARK programs, but there are plenty more in other languages!

https://muen.codelabs.ch/
https://www.secunet.com/en/solutions/sina-communicator-h
https://www.nitrokey.com/products/nethsm
https://www.nitrokey.com/products/nethsm
https://groups.google.com/g/muen-dev/c/mzd5E6lLomw
https://git.codelabs.ch/

13 / 17

But are these things actually used in real projects?!

Muen Separation Microkernel

Linux VM
Subject
Monitor
(native)

Time
(native)

VT
(native)

Muen Separation Kernel

1. Formally verified in SPARK (and its components

and drivers too!)

2. Used in telecomunication devices and cryptographic

hardware (source)

3. Open source! (of course…)

SPARKNaCl

1. Formally verified implementation of TweetNaCl

2. Initial version did catch a mistake of the original

TweetNaCl release.

3. Designed to run on bare metal

4. Constant-time correct

5. Optimised for performance!

Some examples of Ada/SPARK programs, but there are plenty more in other languages!

https://muen.codelabs.ch/
https://www.secunet.com/en/solutions/sina-communicator-h
https://www.nitrokey.com/products/nethsm
https://www.nitrokey.com/products/nethsm
https://groups.google.com/g/muen-dev/c/mzd5E6lLomw
https://git.codelabs.ch/
https://github.com/rod-chapman/SPARKNaCl/
https://tweetnacl.cr.yp.to/
https://archive.fosdem.org/2022/schedule/event/ada_sparknacl/
https://blog.adacore.com/sparknacl-with-gnat-and-spark-community-2021-port-proof-and-performance

13 / 17

But are these things actually used in real projects?!

Muen Separation Microkernel

Linux VM
Subject
Monitor
(native)

Time
(native)

VT
(native)

Muen Separation Kernel

1. Formally verified in SPARK (and its components

and drivers too!)

2. Used in telecomunication devices and cryptographic

hardware (source)

3. Open source! (of course…)

SPARKNaCl

1. Formally verified implementation of TweetNaCl

2. Initial version did catch a mistake of the original

TweetNaCl release.

3. Designed to run on bare metal

4. Constant-time correct

5. Optimised for performance!

Others

1. jwx, SXML: formally verified JSON and XML parsers

2. RecordFlux, formally verified binary parsers,

generators and protocols from state machines

3. QOI-SPARK, Quite-OK Image format in SPARK

Some examples of Ada/SPARK programs, but there are plenty more in other languages!

https://muen.codelabs.ch/
https://www.secunet.com/en/solutions/sina-communicator-h
https://www.nitrokey.com/products/nethsm
https://www.nitrokey.com/products/nethsm
https://groups.google.com/g/muen-dev/c/mzd5E6lLomw
https://git.codelabs.ch/
https://github.com/rod-chapman/SPARKNaCl/
https://tweetnacl.cr.yp.to/
https://archive.fosdem.org/2022/schedule/event/ada_sparknacl/
https://blog.adacore.com/sparknacl-with-gnat-and-spark-community-2021-port-proof-and-performance
https://github.com/Componolit/jwx
https://github.com/Componolit/SXML
https://github.com/AdaCore/RecordFlux
https://github.com/Fabien-Chouteau/qoi-spark

14 / 17

Conclusion I

Liquid types and functional contracts

Enhance types and execution with logic and properties

Documentation of data and program flow: gives meaning and intent

Instrumentation / Debuggability / Robustness of the code

Compatible with other programming paradigms and designs

Allow for formal verification

Formal verification (with SPARK)

Full program analysis: no memory issues, logical problems, contracts/type violations, exception handling…

Fully automated!

A wonderful learning tool (and a strict one at that)

Produces very high quality of software

15 / 17

Conclusion II

The language to rule (almost) them all… Ada…

15 / 17

Conclusion II

The language to rule (almost) them all… Ada…

Pros:

1. non Garbage-Collected (no GC)

2. low-level

3. high-level

4. runtime or proof-time

5. high-performance

6. large hardware support

(whatever GCC and LLVM can handle in theory)

7. expressive (liquid types and contracts)

8. and very readable!

15 / 17

Conclusion II

The language to rule (almost) them all… Ada…

Pros:

1. non Garbage-Collected (no GC)

2. low-level

3. high-level

4. runtime or proof-time

5. high-performance

6. large hardware support

(whatever GCC and LLVM can handle in theory)

7. expressive (liquid types and contracts)

8. and very readable!

The only language I know that ticks all these boxes

15 / 17

Conclusion II

The language to rule (almost) them all… Ada…

Pros:

1. non Garbage-Collected (no GC)

2. low-level

3. high-level

4. runtime or proof-time

5. high-performance

6. large hardware support

(whatever GCC and LLVM can handle in theory)

7. expressive (liquid types and contracts)

8. and very readable!

The only language I know that ticks all these boxes

Cons:

1. not metaprogrammable (on purpose)

2. no macro system (on purpose)

3. lack of libraries (but you can help!)

4. small community (but you can help!)

5. lack of documentation (but you can help!)

6. advance features tend to be overlooked

(but you can help!)

Thank you!
Questions?

Fernando Oleo Blanco -/- irvise@irvise.xyz

“There are only two kinds of languages: the ones people complain about and the ones nobody uses.”

― Bjarne Stroustrup

mailto:irvise@irvise.xyz

17 / 17

Extra: very low-level control with Ada

type BitArray is array (Natural range <>) of Boolean;

type Monitor_Info is record

On : Boolean;

Count : Natural range 0..127;

Status : BitArray (0..7);

end record;

17 / 17

Extra: very low-level control with Ada

with System; use System;

with System.Storage_Elements; use System.Storage_Elements;

type BitArray is array (Natural range <>) of Boolean with Pack; -- One bit per boolean

type Monitor_Info is record

On : Boolean;

Count : Natural range 0..127;

Status : BitArray (0..7);

end record

with Size => 16, Volatile,

Bit_Order => High_Order_First, Scalar_Storage_Order => High_Order_First;

-- Big_Endian data representation regardless of the underlying hardware

17 / 17

Extra: very low-level control with Ada

-- ...

type BitArray is array (Natural range <>) of Boolean with Pack; -- One bit per boolean

type Monitor_Info is record

On : Boolean;

Count : Natural range 0..127;

Status : BitArray (0..7);

end record

with Size => 16, Volatile, ...;

for Monitor_Info use record

On at 0 range 0 .. 0;

Count at 0 range 1 .. 7;

Status at 1 range 0 .. 7;

end record; -- Define the bit position of the data, aka, representation clause!

17 / 17

Extra: very low-level control with Ada

-- ...

type BitArray is array (Natural range <>) of Boolean with Pack; -- One bit per boolean

type Monitor_Info is record

On : Boolean;

Count : Natural range 0..127;

Status : BitArray (0..7);

end record

with Size => 16, Volatile, ...;

for Monitor_Info use record

On at 0 range 0 .. 0;

Count at 0 range 1 .. 7;

Status at 1 range 0 .. 7;

end record; -- Define the bit position of the data, aka, representation clause!

My_MMIO_Thing : aliased Monitor_Info

with Address => To_Address(16#6000_10A0#);

