An unhinged introduction to
Ada/SPARK

A real showcase of the Ada/SPARK language

Fernando Oleo Blanco - Irvise

https://irvise.xyz/
https://github.com/Irvise

Dis-fucking-claimer

Don't take it too seriously
This is supposed to be entretaining too

My words are mine only
2/57

Join in for the ride!

3/57

Y

Table of contents

. Why a presentation like this?

—_—

© WY 0 N o U A~ WN
)]
(D
>
™
=,
(@)
(%2}

4/57

Why a presentation like this?

5/57

Why a presentation like this?

= People really do not know how powerful Ada/SPARK is

5/57

Why a presentation like this?

= People really do not know how powerful Ada/SPARK is
= Most presentations are only introductory

= The advance stuff is what makes Ada great!

5/57

Why a presentation like this?

= People really do not know how powerful Ada/SPARK is
= Most presentations are only introductory
= The advance stuff is what makes Ada great!

= To make a direct comparison with modern C++ and Rust

5/57

Why a presentation like this?

= People really do not know how powerful Ada/SPARK is
= Most presentations are only introductory
= The advance stuff is what makes Ada great!
= To make a direct comparison with modern C++ and Rust
= Because Ada/SPARK is wonderful

5/57

Why a presentation like this?

= People really do not know how powerful Ada/SPARK is
= Most presentations are only introductory
= The advance stuff is what makes Ada great!
= To make a direct comparison with modern C++ and Rust
= Because Ada/SPARK is wonderful

5/57

NVIDIA?

NVIDIA — Securing the Future of Safety and Security of Embedded Software (Captioned)

6/57

https://www.youtube.com/watch?v=2YoPoNx3L5E

NVIDIA?

DEF CON 33 - How to secure unique ecosystem shipping 1 billion+ cores? - Adam Zabroc...

6/57

https://www.youtube.com/watch?v=KhWtkZmOPn4

NVIDIA?

DEF CON 33 - How to secure unique ecosystem shipping 1 billion+ cores? - Adam Zabroc...

NVIDIA ISO-26262 SPARK guidelines. Also, NVIDIA certifies to SIL-4 a 7 MLOC OS written in Ada/SPARK

6/57

https://www.youtube.com/watch?v=KhWtkZmOPn4
https://nvidia.github.io/spark-process/
https://www.eenewseurope.com/en/nvidia-drives-ada-and-spark-into-driverless-cars/
https://cacm.acm.org/research/co-developing-programs-and-their-proof-of-correctness/

Follow along and test the features!

Learn.AdaCore Compiler Explorer/Godbolt

LEARN.ADACORE
.COM

¢) Edit on GitHub

What is Ada and
SPARK?

AAa ic a ctata_nf-tha art nrnAaramminn lanniana

7157

https://learn.adacore.com/
https://github.com/AdaCore/learn
https://github.com/AdaCore/learn
https://godbolt.org/
https://godbolt.org/
https://github.com/compiler-explorer/compiler-explorer/commit/ef264acac

A 60 seconds overview of Ada

Credit: Jean-Pierre Rosen

m.
0
- T - =
& S 2] = e &
o= = = e
3] (=B [+ E] = - !
X D o 7] z SN
Q &) 7] o] —
S LS LI L LR
o 1T !
a.

Very strong typing system
A classical procedural language,
based on Pascal 8/57

A 60 seconds overview of Ada II

Ada is an open ISO standard (ISO/IEC
8652)

= Ada 83 (ANSI/MIL-STD-1815A): 348 pages (US

letter)

= Ada 2012: 832 pages (A4)

= There is a "Rationale"/Annotated (AARM) version
that explains all decissions made

= Meant to be used by all Ada programmers!!!

9/57

https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub119.pdf
https://www.adaic.org/ada-resources/standards/ada12/
https://www.adaic.org/ada-resources/standards/ada22/

A 60 seconds overview of Ada II

Ada is an open ISO standard (ISO/IEC C/C++ are ISO standards

8652) = 90 (ISO/IEC 9899): 219 pages (Ad)

= Ada 83 (ANSI/MIL-STD-1815A): 348 pages (US
letter) -

= Ada2012:832pages(A4) STTTTTTTTTmomeeosmemeseeeeesteeeesfoooot

= There is a "Rationale"/Annotated (AARM , = Standard not meant to be read by the general
ere Is a "Rationale”/Annotated () version public (ISOCPP). Only drafts available in Github

that explains all decissions made 7 st T eseesseese s

= Meant to be used by all Ada programmers!!!

9/57

https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub119.pdf
https://www.adaic.org/ada-resources/standards/ada12/
https://www.adaic.org/ada-resources/standards/ada22/
https://www.iso.org/es/contents/data/standard/01/77/17782.html
https://www.iso.org/es/contents/data/standard/08/20/82075.html
https://www.iso.org/es/contents/data/standard/02/58/25845.html
https://www.iso.org/es/contents/data/standard/08/36/83626.html
https://isocpp.org/std/the-standard
https://github.com/cplusplus/draft

A 60 seconds overview of Ada II

Ada is an open ISO standard (ISO/IEC C/C++ are ISO standards

8652) = 90 (ISO/IEC 9899): 219 pages (Ad)

= Ada 83 (ANSI/MIL-STD-1815A): 348 pages (US
letter) -

= Ada2012:832pages(A4) STTTTTTTTTmomeeosmemeseeeeesteeeesfoooot

= There is a "Rationale"/Annotated (AARM , = Standard not meant to be read by the general
ere Is a "Rationale”/Annotated () version public (ISOCPP). Only drafts available in Github

that explains all decissions made 7 st T eseesseese s

= Meant to be used by all Ada programmers!!! Rust /s standarised (no I50)

» Added in 2023. Found in The Rust Reference.

= New releases every 6 weeks... Does not cover
STL... 849 pages (no official pdf). There is
Ferrocene... 9157

https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub119.pdf
https://www.adaic.org/ada-resources/standards/ada12/
https://www.adaic.org/ada-resources/standards/ada22/
https://www.iso.org/es/contents/data/standard/01/77/17782.html
https://www.iso.org/es/contents/data/standard/08/20/82075.html
https://www.iso.org/es/contents/data/standard/02/58/25845.html
https://www.iso.org/es/contents/data/standard/08/36/83626.html
https://isocpp.org/std/the-standard
https://github.com/cplusplus/draft
https://github.com/rust-lang/rfcs/pull/3355
https://doc.rust-lang.org/reference/
https://github.com/ferrocene/ferrocene

Lets get started fucking
dammit!

Types, types, types aaaandddd... more types! Also,
data!

Lets start with an example. How do you declare a player’s life in a videogame?

11757

Types, types, types aaaandddd... more types! Also,
data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

float life
Player

11757

Types, types, types aaaandddd... more types! Also,
data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

float life 100.0
Player

11757

Types, types, types aaaandddd... more types! Also,

data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++
struct Player_t
const float MAX_LIFE

float life MAX_LIFE
Player

100.0

11757

Types, types, types aaaandddd... more types! Also,
data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

const float MAX_ LIFE 100.0
float life MAX_LIFE
Player

Player. life 1000.0

11757

Types, types, types aaaandddd... more types! Also,
data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++
struct Player_t
const float MAX_LIFE 100.0

float life MAX_LIFE
Player

Player. life 1000.0
Player. life -1000.0

11757

Types, types, types aaaandddd... more types! Also,

data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

const float MAX_ LIFE
float life MAX_LIFE
Player

Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

100.0

11757

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,

data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

const float MAX_ LIFE
float life MAX_LIFE
Player

Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

100.0

Ada

type Player_T is record

Life : Float;
end record;

Player : Player_T;

11757

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,
data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++ Ada

struct Player_t type Life_T is digits 6 range 0.0 .. 100.0;
c type Player_T is record
const float MAX_LIFE 100.0 C
float life MAX_LIFE Life : Life_T;
Player end record;

Player : Player_T;
Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

Jason Turner - NDC TechTown 2025 11/57

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,
data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++ Ada

struct Player_t type Life_T is digits 6 range 0.0 .. 100.0;
c type Player_T is record
const float MAX_LIFE 100.0 C
float life MAX_LIFE Life : Life_T 100.0,;
Player end record;

Player : Player_T;
Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

Jason Turner - NDC TechTown 2025 11/57

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,
data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++ Ada

struct Player_t type Life_T is digits 6 range 0.0 .. 100.0;
c type Player_T is record
const float MAX_LIFE 100.0 C
float life MAX_LIFE Life : Life_T Life_T'Last;
Player end record;

Player : Player_T;
Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

Jason Turner - NDC TechTown 2025 11/57

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,

data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

const float MAX_ LIFE
float life MAX_LIFE
Player

Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

100.0

Ada

type Life_T is digits 6 range 0.0 ..

type Player_T is record

Life : Life_T Life_T'Last;

end record;

Player : Player_T;
Player.Life 1000.0;

100.0;

11757

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,

data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

const float MAX_ LIFE
float life MAX_LIFE
Player

Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

100.0

Ada

type Life_T is digits 6 range 0.0 ..

type Player_T is record

Life : Life_T Life_T'Last;

end record;

Player : Player_T;
Player.Life 1000.0;

Player.Life -1000.0;

100.0;

11757

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,

data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

const float MAX_ LIFE 100.0
float life MAX_LIFE
Player

Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

Ada
type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record

Life : Life_T
end record;

Life_T'Last;

Player : Player_T;

Player.Life 1000.0;
Player.Life -1000.0;
Player.Life 100;

11757

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,

data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

const float MAX_ LIFE
float life MAX_LIFE
Player

Player. life 1000.0
Player. life -1000.0
Player. life 100

100.0

Implicit conversions considered harmful -

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record

Life : Life_T Life_T'Last;
end record;

Player : Player_T;

Player.Life 1000.0;
Player.Life -1000.0;
Player.Life Life_T(100);

11757

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

Types, types, types aaaandddd... more types! Also,

data!

Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t

const float MAX_ LIFE
float life MAX_LIFE
Player

Player. life 1000.0
Player. life -1000.0
Player. life 100

Implicit conversions considered harmful -

100.0

Ada

type Life_T is digits 6 range 0.0 ..

type Player_T is record

Life : Life_T
end record;
Player : Player_T;

Player.Life 1000.0;

Player.Life -1000.0;

Life_T'Last;

100.0;

57

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

The type atlas: the very basics I

Ada

type My_Enum 1is (On, Off, Unknown);

12757

The type atlas: the very basics I

Ada

type My_Enum 1is (On, Off, Unknown);
type My_Int is range -10 .. 2**8;

type My_Float is digits 10;
type My_F12 is digits 10 range 0.0 .. 1.0;

12757

The type atlas: the very basics I

Ada

type My_Enum 1is (On, Off, Unknown);
type My_Int is range -10 .. 2**8;
type My_Float is digits 10;

type My_F12 is digits 10 range 0.0 .. 1.0;

type My_Fix is delta 0.5 range -1.5 .. 2.0;

12757

The type atlas: the very basics I

Ada

type My_Enum 1is (On, Off, Unknown);

type My_Int is range -10 .. 2**8;

type My_Float is digits 10;

type My_F12 is digits 10 range 0.0 .. 1.0;
type My_Fix is delta 0.5 range -1.5 .. 2.0;

type My_Mod is mod 3;
type My_Decimal is delta 10.0 ** (-4) digits 20;

12757

The type atlas: the very basics I

Ada

type My_Enum 1is (On, Off, Unknown);

type My_Int is range -10 .. 2**8;
type My_Float is digits 10;
type My_F12 is digits 10 range 0.0 .. 1.0;

type My_Fix is delta 0.5 range -1.5 .. 2.0;

type My_Mod is mod 3;
type My_Decimal is delta 10.0 ** (-4) digits 20;

Notice that all type declarations are different!
This will be important when we get to generics

12757

The type atlas: the very basics II

Some built in types
Ada

Some_Big_Int : constant 344 _333_322_444,
Some_Float : constant 1.3566;

Some_Range : Integer range 1 .. 10 4;

F1, F.2, F_3 : Float 0.0;

13757

The type atlas: the very basics II

Some built in types

Ada
type Boolean is (True, False);
type Integer is
type Natural is range 0 .. Integer'Last;
type Positive 1is range 1 .. Integer'Last;
type Float is
type Character is (..., 'A', 'B', etc.);

type
type

wWide_Character is (...);
Wide_Wide_Character is (...);

13757

The type atlas: the very basics II

Some built in types
Ada

type Boolean is (True, False);

type Integer is

type Natural is range 0 .. Integer'Last;
type Positive 1is range 1 .. Integer'Last;
type Float is

type Character is (..., 'A', 'B', etc.);
type Wide_Character is (...);
type Wide_Wide_Character is (...);

For more info, see Ada Reference Manual (ARM) Appendix A.1.

Also, there are Long_ and Long_Long_ variants for Integer and Float . 1357

https://ada-rapporteur-group.github.io/ARM/Ada_2022/RM-A-1.html

The type atlas: the very basics III

Leveraging type relationships
Ada

type Grade is range 0 .. 10;
subtype Failure is Grade range 0 .. 4;

14 /57

The type atlas: the very basics III

Leveraging type relationships
Ada

type Grade is range 0 .. 10;
subtype Failure is Grade range 0 .. 4;

type Math_Grade is new Grade;
type Econ_Grade is new Grade;

14 /57

The type atlas: the very basics III

Leveraging type relationships
Ada

type Grade is range 0 .. 10;
subtype Failure is Grade range 0 .. 4;

type Math_Grade is new Grade;
type Econ_Grade is new Grade;

type Sports_Grade is new Grade range 1 .. 6;

14 /57

The type atlas: the very basics III

Leveraging type relationships
Ada

type Grade is range 0 .. 10;
subtype Failure is Grade range 0 .. 4;

type Math_Grade is new Grade;
type Econ_Grade is new Grade;

type Sports_Grade is new Grade range 1 .. 6;

type Week is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
subtype Work_Days is Days range Mon .. Fri;

14 /57

The type atlas: the very basics IIII
Working with type relationships

Ada
Some_Grade : Grade 7;
Some_Fail : Failure 4;
Some_Grade Some_Fail;

15757

The type atlas: the very basics IIII
Working with type relationships

Ada
Some_Grade : Grade 7;
Some_Fail : Failure 4;
Some_Grade Some_Fail;
Some_Grade 7;
Some_Fail Some_Grade:

15757

The type atlas: the very basics IIII
Working with type relationships

Ada
Some_Grade : Grade 7;
Some_Fail : Failure 4;
Some_Grade Some_Fail;
Some_Grade 7;
Some_Fail Some_Grade:
Some_Fail (1f Some_Grade in Failure then Some_Grade else ...);

15757

The type atlas: the very basics IIII
Working with type relationships

Ada

Some_Math_Grade : Math_Grade 7;
Some_Econ_Grade : Econ_Grade 7;
Some_Grade : Grade

15757

The type atlas: the very basics IIII

Working with type relationships

Ada

Some_Math_Grade :
Some_Econ_Grade :
: Grade

Some_Grade

Some_Econ_Grade

Some_Math_ Grade

Math_Grade 7;
Econ_Grade 7;

Some_Grade;

Some_Econ_Grade;

15757

The type atlas: the very basics IIII
Working with type relationships

Ada

Some_Math_ Grade
Some_Econ_Grade
Some_Grade

Some_Econ_Grade

Some_Math_ Grade

Some_Math_ Grade

: Math_Grade 7;
: Econ_Grade 7;
: Grade 7;

Some_Grade;

Some_Econ_Grade;

Math_Grade(Some_Grade);

15757

A first stop: comparison with C++

Ada cpp

type My_Int_T is range -100 .. 100; int My_Integer -100
My_Integer : My_Int_T My_Int_T'First;

16 /57

A first stop: comparison with C++

Ada cpp
type My_Int_T is range -100 .. 100; const int MIN_VAL -100
My_Integer : My_Int_T My_Int_T'First; int My_Integer MIN_VAL

16 /57

A first stop: comparison with C++

Ada cpp
type My_Int_T is range -100 .. 100; const int MIN_VAL -100
My_Integer : My_Int_T My_Int_T'First; const int MAX_VAL 100
int My_Integer MIN_VAL

16 /57

A first stop: comparison with C++

Ada cpp
type My_Int_T is range -100 .. 100; struct My_Int_T
My_Integer : My_Int_T My_Int_T'First; const int MIN_VAL -100
const int MAX_VAL 100
int value MIN_VAL
My_Integer

16 /57

A first stop: comparison with C++

Ada cpp

Okay, now... for real, I promise...
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T My_Int_T'First;

16 /57

A first stop: comparison with C++

Ada cpp
type My_Int_T is range -100 .. 100; template<int min, int max>
My_Integer : My_Int_T := My_Int_T'First; struct test
{
consteval test(int v): value(v) {
if(v < min || v > max) throw v;
3
int value, min, max;
i
int main()
{
test<-100, 100> t1(2);
test<-100, 100> t2(120);
3

16 /57

A first stop: comparison with C++

Ada cpp

type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T My_Int_T'First; include<limits
std: :numeric_limits<int min

16 /57

A first stop: comparison with C++

Ada cpp

type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First; #include<limits
std: :numeric_limits<int>::min();

#include<utility
std::in_range<some_type>(some_value);

#include<ranges
std::range::range;

16 /57

A first stop: comparison with C++

Ada cpp

type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First; #include<limits
std: :numeric_limits<int>::min();

#include<utility
std::in_range<some_type>(some_value);

#include<ranges
std::range::range;

16 /57

A first stop: comparison with C++

Ada cpp

type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First; #include<limits
std: :numeric_limits<int>::min();

#include<utility
std::in_range<some_type>(some_value);

#include<ranges
std::range::range;

16 /57

A first (v2) stop: comparison with Rust

Rust ranged integers
= Available in nightly with the Ranged_Integers crate

= Has been in development for years
= There are still discussions going on

= Will come to stable but... WHEN?

17757

https://docs.rs/ranged_integers/latest/ranged_integers/
https://github.com/rust-lang/rfcs/issues/671

A first (v2) stop: comparison with Rust

Rust ranged integers
= Available in nightly with the Ranged_Integers crate

= Has been in development for years
= There are still discussions going on

= Will come to stable but... WHEN?

Rust's other types?

= Nothing still for floats (fi6, 32 ...)
= Discussions happened for fixed points, nothing official yet (though there are creates for them)
= Obviously, no decimal

= enum in Rustis cool:)

Strongly typed (expect aliases 4.), and casting can be unexpected... See 1000 as u8

""" 17757

https://docs.rs/ranged_integers/latest/ranged_integers/
https://github.com/rust-lang/rfcs/issues/671
https://doc.rust-lang.org/rust-by-example/types/cast.html
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5356-the-state-of-rust-trying-to-catch-up-with-ada/

The type atlas: the very basics V
Type/Variable/etc attributes

Ada

Integer'First;
Integer'Last;
Integer'Succ(3);
Integer'Pred(3);
Integer'vValue("-10");
Boolean'Pos(False);
Boolean'val(0);
My_Type'Size;

My_Var 'Image;
My_Var 'Access;

Ada 2022 RM K.2 Language-Defined Attributes

18 /57

https://ada-rapporteur-group.github.io/ARM/Ada_2022/RM-K-2.html

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0

type My_Smol_Enum is (Off, On) with Size => 1
I2C1 : My_Smol_Enum with Address => 16#01000#

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0

type My_Smol_Enum is (Off, On) with Size => 1
I2C1 : My_Smol_Enum with Address => 16#01000#

Smol Var : Bit_ 1 with Address => I2C1'Address

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0

type My_Smol_Enum is (Off, On) with Size => 1
I2C1 : My_Smol_Enum with Address => 16#01000#

Smol Var : Bit_ 1 with Address => I2C1'Address

type My_Network 1is xxxxx with Bit_Oder => High_Order_First, -- Big Endian type!!
Alignment => 4

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0;

type My_Smol_Enum is (Off, On) with Size => 1;
I2C1 : My_Smol_Enum with Address => 16#01000#;

Smol_Var : Bit_1 with Address => I2C1'Address;

type My_Network 1is xxxxx with Bit_Oder => High_Order_First, -- Big Endian type!!
Alignment => 4;

type API1_Access 1s access API1 Type with Storage_Pool => API1_Storage_Pool;

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

function MemCopy
Destination System.Address

Source System.Address
Length Natural
return Address
with
Import

Convention => C

Link_Name => "memcpy

Pre => Source /= Null_Address and then
Destination /= Null_Address and then
not Overlapping (Destination, Source, Length

Post MemCopy 'Result Destination

1l
\Y

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type Even is new Natural with
Dynamic_Predicate => Even mod 2 = 0

type 0dd 1is new Natural with
Dynamic_Predicate => not in Even

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type Even is new Natural with
Dynamic_Predicate => Even mod 2 = 0

type 0dd 1is new Natural with
Dynamic_Predicate => not in Even

type Prime is new Positive with
Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0)

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type Even is new Natural with
Dynamic_Predicate => Even mod 2 = 0;

type 0dd 1is new Natural with
Dynamic_Predicate => not in Even;

type Prime is new Positive with
Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

function Is_Prime (N : Positive) return Boolean is
(for all J in Positive range 2 .. N - 1 => Nmod J /= 0);
type Prime_2 is new Positive with Dynamic_Predicate => (Is_Prime(Prime_2));

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type Even is new Natural with
Dynamic_Predicate => Even mod 2 = 0;

type 0dd 1is new Natural with
Dynamic_Predicate => not in Even;

type Prime is new Positive with
Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

type Increasing_Array 1is array (Index) of Some_Number

with Dynamic_Predicate => (for all I in Index =>
(1if I < Index'Last then Increasing_Array(I) < Increasing_Array(I+1)));

19757

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type Even is new Natural with
Dynamic_Predicate => Even mod 2 = 0

type 0dd 1is new Natural with
Dynamic_Predicate => not in Even

type Prime is new Positive with
Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0)

type Increasing_Array 1is array (Index) of Some_Number
with Dynamic_Predicate => (for all I in Index =>
(1if I < Index'Last then Increasing_Array(I) < Increasing_Array(I+1)))

Probably one of the coolest features of the language -

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

type Even is new Natural with
Dynamic_Predicate => Even mod 2 = 0

type 0dd 1is new Natural with
Dynamic_Predicate => not in Even

type Prime is new Positive with
Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0)

type Increasing_Array 1is array (Index) of Some_Number
with Dynamic_Predicate => (for all I in Index =>
(1if I < Index'Last then Increasing_Array(I) < Increasing_Array(I+1)))

Aspects decouple implementation details from the problem 1659

Again, compare Ada to C++/Rust

20/57

Again, compare Ada to C++/Rust

The real problem of C++ - Klaus Iglberger - Meeting C++ 2025

Bound safety? Type Safety? Initialization Safety? Lifetime safety? /—/ Now you care?
20/57

https://www.youtube.com/watch?v=QmNkbUgADBE

Again, compare Ada to C++/Rust

Catching Bugs Early: Validating C++ Contracts with Static Analysis - Peter Martin & Mike ...

Catching bugs early (C++26) you say?? /—/ NOW you care? Do bugs cost money NOW???
20/57

https://www.youtube.com/watch?v=3DDqDKaKmio

Again, compare Ada to C++/Rust

Three Cool Things in C++26: Safety, Reflection & std::execution - Herb Sutter - C++ on Sea...

Safety & UB? Reflection (much more advance than Ada'’s)? Concurrency and Parallelism???
20/57

https://www.youtube.com/watch?v=kKbT0Vg3ISw

You think that was a lot about
types???

Composite types

The type atlas: the composite basics I
Arrays I

Ada

type My_Index is range -10 .. 10;
type Int_Arr 1is array (My_Index) of Integer;

22 /57

The type atlas: the composite basics I
Arrays I

Ada

type My_Index is range -10 .. 10;
type Int_Arr 1is array (My_Index) of Integer;

My_Arrayl : Int_Arr [1;
My_Array2 : Int_Arr [1, 2, 1, 2...];
My_Array3 : Int_Arr [-106 | -8] -6 ... =1, -9 | -7 ... => 2];

22 /57

The type atlas: the composite basics I
Arrays I

Ada

type My_Index is range -10 .. 10;
type Int_Arr 1is array (My_Index) of Integer;

My_Arrayl : Int_Arr [1;

My_Array2 : Int_Arr [1, 2, 1, 2...];

My_Array3 : Int_Arr [-106 | -8] -6 ... =1, -9 | -7 ... => 2];
My_Array4 : Int_Arr [others => 0];

My_Array5 : Int_Arr [-10 | -8 | -6 ... => 1, others => 2];

22 /57

The type atlas: the composite basics I

Arrays I

Ada

type My_Index is range -10 .. 10;
is array (My_Index) of Integer;

type Int_Arr

My_Arrayl :
My_Array2 :
My_Array3 :
My_Array4 :
My_Array5 :

My_Array6 :
My_Array7 :

Int_Arr
Int_Arr
Int_Arr
Int_Arr
Int_Arr

Int_Arr
Int_Arr

[1;

[1, 2, 1, 2...1;

[-16 | -8 |

-6 ...

[others => 0];

[-16 | -8 |

[for T in My_Index'Range

-6 ...

[for T in 1 ..

3 => Integer(I),

=> 1, -9 | -7 ...

=> 2],

=> 1, others => 2];

=> Integer(My_Index)];
5 ..

10 => 10,

others => 0];

22 /57

The type atlas: the composite basics I

Arrays II: unconstrained arrays
Ada

type Int_Arr is array (Positive range <>) of Integer;

23/57

The type atlas: the composite basics I

Arrays II: unconstrained arrays

Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_var

My_Int_Arr_var2 :
My_Int_Arr_var3 :

: Int_Arr(1 ..

Int_Arr

Int_Arr(1 ..

10)

A)

[others => 0];
[1, 2, 3, 4];
[others => 0];

23/57

The type atlas: the composite basics I

Arrays II: unconstrained arrays
Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. 10) [others => 0];
My_Int_Arr_Var2 : Int_Arr [1, 2, 3, 4];
My_Int_Arr_Var3 : Int_Arr(1 .. A) [others => 0];

type Arr_Int_Arr is array (Positive range <>) of Int_Arr (1 .. 20);

23/57

The type atlas: the composite basics I

Arrays II: unconstrained arrays
Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. 10) [others => 0];
My_Int_Arr_Var2 : Int_Arr [1, 2, 3, 4];
My_Int_Arr_Var3 : Int_Arr(1 .. A) [others => 0];

type Arr_Int_Arr is array (Positive range <>) of Int_Arr (1 .. 20);

type Bit_Matrix is array (Integer range <>, Integer range <>) of Boolean;

23/57

The type atlas: the composite basics I

Arrays II: unconstrained arrays
Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. 10) [others => 0];
My_Int_Arr_Var2 : Int_Arr [1, 2, 3, 4];
My_Int_Arr_Var3 : Int_Arr(1 .. A) [others => 0];

type Arr_Int_Arr is array (Positive range <>) of Int_Arr (1 .. 20);

type Bit_Matrix is array (Integer range <>, Integer range <>) of Boolean;
My_Mat 'Range; My_Mat'Range(2); My_Arr'Length; My_Arr'First; My_Arr'Last;

23/57

The type atlas: the composite basics I

Arrays III. using mod s as index

Ada

type My_Mod is mod 7;
type Int_Ring is array (My_Mod) of Integer;

Int_Ring_Var : Int_Ring [for T in My_Mod => Integer(I)];
Index : My_Mod 6;
Index Index + 1;

Int_Ring_Var(Index) = 0;

24 /57

The type atlas: the composite basics I

Arrays III. using mod s as index

Ada

type My_Mod is mod 7;
type Int_Ring is array (My_Mod) of Integer;

Int_Ring_Var : Int_Ring [for T in My_Mod => Integer(I)];
Index : My_Mod 6;
Index Index + 1;

Int_Ring_Var(Index) = 0;

With mod types, it is mathematicaly imposible to cause an out

of bounds error!!!

There are no issues with ranges and we don’t have to use clases/methods! 24157

The type atlas: the composite basics I

Arrays IIII: using enums as index
Ada

type RGBA is (Red, Green, Blue, Alpha);
type Pixel_T 1is array (RGBA) of Mod_256;

Pixel : Pixel_T [Alpha => Mod_256'Last; others => 0];
for C in RGBA range Red .. Blue loop

Pixel(C) 100;
end loop;

Enums allow for extremely easy state machines and precise
iterations!

25/57

The type atlas: the composite basics I

Arrays V. array slicing
Ada

type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) [others => 1];

My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2);

My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'lLast);

26 /57

The type atlas: the composite basics I

Arrays V. array slicing
Ada

type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) [others => 1];
My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2);

My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'lLast);

My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. My_Int_Arr_Var'Last - 1) [others => 2];

26 /57

The type atlas: the composite basics I

Arrays V. array slicing
Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr (1 .. 50) [others => 1];

My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2);

My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'lLast);

My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. My_Int_Arr_Var'Last - 1) [others => 2];

My_Ann_Arr_Var2 My_Int_Arr_Var (1 .. My_Int_Arr_Var'lLast / 2);
My_Int_Arr_Var3 My_Int_Arr_Var (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);

26 /57

The type atlas: the composite basics I

Arrays V. array slicing
Ada

26 /57

The type atlas: the composite basics I

Arrays V. array slicing
Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr (1 .. 50) [others => 1];

My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2);

My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'lLast);

My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. My_Int_Arr_Var'Last - 1) [others => 2];

My_Ann_Arr_Var2 My_Int_Arr_Var (1 .. My_Int_Arr_Var'lLast / 2);
My_Int_Arr_Var3 My_Int_Arr_Var (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);

26 /57

The type atlas: the composite basics I

Arrays V. array slicing
Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr (1 .. 50) [others => 1];

My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2);

My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'lLast);

My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. My_Int_Arr_Var'Last - 1) [others => 2];

My_Ann_Arr_Var2 My_Int_Arr_Var (My_Int_Arr_Var2'Range);
My_Int_Arr_Var3 My_Int_Arr_Var (My_Int_Arr_Var3'Range);

26 /57

The type atlas: the composite basics I

Arrays V. array slicing
Ada

type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) [others => 1];
Last_Index renames My_Int_Arr_Var'lLast;

My_Int_Arr_Var2 : Int_Arr (1 .. Last_Index / 2);
My_Int_Arr_Var3 : Int_Arr (Last_Index / 2 + 1 .. Last_Index);

My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. Last_Index - 1) [others => 2];

My_Ann_Arr_Var2 My_Int_Arr_Var (My_Int_Arr_Var2'Range);
My_Int_Arr_Var3 My_Int_Arr_Var (My_Int_Arr_Var3'Range);

26 /57

The type atlas: the composite basics I

Arrays V. array slicing
Ada

type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) [others => 1];
Last_Index renames My_Int_Arr_Var'lLast;

My_Int_Arr_Var2 : Int_Arr (1 .. Last_Index / 2);
My_Int_Arr_Var3 : Int_Arr (Positive'Succ(Last_Index / 2) .. Last_Index);

My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. Last_Index - 1) [others => 2];

My_Ann_Arr_Var2 My_Int_Arr_Var (My_Int_Arr_Var2'Range);
My_Int_Arr_Var3 My_Int_Arr_Var (My_Int_Arr_Var3'Range);

26 /57

The type atlas: the composite basics I
Arrays VI: Strings

Ada

Text

Textl
Text2
Text3

: String;

: String
: String
: String

Ilonell;
Iltwoll;

"three";

27157

The type atlas: the composite basics I
Arrays VI: Strings

Ada

Text

Textl
Text2
Text3

Text2
Text2

: String;

: String
: String
: String

Textl;
Text3;

Ilonell;
Iltwoll;

"three";

27157

The type atlas: the composite basics I

Arrays VI: Strings

Ada

Text

Textl

Text2

Text3

Text2

Text2

Textu

: String;
: String
: String

: String

Textl;
Text3;

: String

Ilonell;
Iltwoll;
"three";

"CAICBIE";

27157

The type atlas: the composite basics I
Arrays VII: Ada and the stack, part one

Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. B) [others => 0];

28 /57

The type atlas: the composite basics I
Arrays VII: Ada and the stack, part one

Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. B) [others => 0];

28 /57

The type atlas: the composite basics I
Arrays VII: Ada and the stack, part one

Ada

type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. B) [others => 0];

Ada (ab)uses the stack like crazy

It is great for performance, automatic memory management and ease of use
but... It does have its limitations (see Vector for a solution).

Read GNAT's Stack Related Facilities for debugging, metrics and stack size configuration

28 /57

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_and_program_execution.html#stack-related-facilities

The type atlas: the composite basics I
Arrays VIII: empty what?

Ada

type Some_Range is range 1 .. 0;

29/57

The type atlas: the composite basics I
Arrays VIII: empty what?

Ada

type Some_Range is range 1 .. 0;

29/57

The type atlas: the composite basics I
Arrays VIII: empty what?

Ada

type Some_Range is range 1 .. 0;

type Null_Arr 1is array (Some_Range) of Integer;

29/57

The type atlas: the composite basics I
Arrays VIII: empty what?

Ada

type Some_Range is range 1 .. 0;

type Null_Arr 1is array (Some_Range) of Integer;

for I in Null_Arr'Range loop

end loop;

29/57

The type atlas: the composite basics II

Records I: aka, structs
Ada

type Data is record

Day : Integer range 1 .. 31;

Month : Months;

Year : Integer range 1 .. 3000 2026;
end record;

30/57

The type atlas: the composite basics II

Records I: aka, structs
Ada

type Data is record

Day : Integer range 1 .. 31;

Month : Months;

Year : Integer range 1 .. 3000 2026;
end record;

Ada_Birthday : Date (10, December, 1815);

Leap_Day_2020 : Date (Day = 29,
Month => February,
Year => 2020);

30/57

The type atlas: the composite basics II

Records I: aka, structs
Ada

type Data is record

Day : Integer range 1 .. 31;

Month : Months;

Year : Integer range 1 .. 3000 2026;
end record;

Ada_Birthday : Date (10, December, 1815);

Leap_Day_2020 : Date (Day = 29,
Month => February,
Year => 2020);
type Empty is null record;

30/57

The type atlas: the composite basics II

Records II: dynamic record sizes
Ada

Max_Len : constant Natural Compute_Max_Len;

type Growable_Stack is record
Items : Items_Array (1 .. Max_Len);
Len : Natural;

end record;

31/57

The type atlas: the composite basics II

Records III: record discriminants
Ada

type Square_Mat (Size : Positive) is record
Mat : Matrix(1 .. Size, 1 .. Size);
end record;
type Buffer (Size : Buffer_Size 100) is record
Pos : Buffer_Size 0;
Value : String(1 .. Size);
end record;

32/57

The type atlas: the composite basics II

Records III: record discriminants
Ada

type Square_Mat (Size : Positive) is record
Mat : Matrix(1 .. Size, 1 .. Size);
end record;
type Buffer (Size : Buffer_Size 100) is record
Pos : Buffer_Size 0;
Value : String(1 .. Size);
end record;

Basis : Square_Mat(5);
ILLEGAL : Square_Mat;

32/57

The type atlas: the composite basics II

Records III: record discriminants
Ada

type Square_Mat (Size : Positive) is record
Mat : Matrix(1 .. Size, 1 .. Size);
end record;
type Buffer (Size : Buffer_Size 100) is record
Pos : Buffer_Size 0;
Value : String(1 .. Size);
end record;

Basis : Square_Mat(5);
ILLEGAL : Square_Mat;

Large : Buffer(200);
Message : Buffer;

2 /57

The type atlas: the composite basics II

Records IIII: variant records (similar to Sum types in OCaml...)
Ada

type Expr_Kind_Type is (Bin_Op_Plus, Bin_Op_Minus, Num);
type Expr (Kind : Expr_Kind_Type) is record

Current_Val : Float;
case Kind 1is
when Bin_Op_Plus | Bin_Op_Minus =>
Left, Right : Operator;
when Num =>
Val : Integer;
end case;

end record;

33/57

The type atlas: the composite basics II

Records IIII: variant records (similar to Sum types in OCaml...)
Ada

type Expr_Kind_Type is (Bin_Op_Plus, Bin_Op_Minus, Num);

type Expr (Kind : Expr_Kind_Type) is record
Current_Val : Float;
case Kind 1is
when Bin_Op_Plus | Bin_Op_Minus =>
Left, Right : Operator;
when Num =>
Val : Integer;
end case;
end record;

E : Expr (Num, 12.0, 133);
E.Left Some_Operation;

33/57

The type atlas: the composite basics II
Records IIII: variant records (similar to Sum types in OCaml...)

Ada

type Expr (Kind : Expr_Kind_Type) is record
Current_Val : Float;
case Kind 1is
when Bin_Op_Plus | Bin_Op_Minus => Left, Right : Operator;
when Num => Val : Integer;
end case;
end record;

E : Expr (Num, 12);

case E.Kind 1is
when Bin_Op_Plus => Eval_Expr (E.Left) + Eval_Expr (E.Right),
when Bin_Op_Minus => Eval_Expr (E.Left) - Eval_Expr (E.Right),
when Num => E.Val;

end case;

3 /57

The type atlas: the composite basics II

Records V: variant records, common examples
Ada

type Option(Valid : Boolean False) is record
case Valid is
when False => null;
when True => Value : My_Type;
end case;
end record;

No_Data_You_Silly : exception;
type Result is record

My_Resutl : My_Type raise No_Data_You_Silly;
end record;

34 /57

The type atlas: the composite basics II
Records VI: record subtyping

Ada

type My_Fixed_Buffer is new Buffer(500);

subtype My_Num_Expr 1is Expr(Num);

35/57

The type atlas: the composite basics IV

Low level aspects I: record and data representation
Ada

type UART_Baud is (b_9600, b_115200, b_921600) with Size => 2
for UART_Baud use (b_9600 => 2#00#, b_115200 => 2#01#, b_021600 => 2#10#)

36 /57

The type atlas: the composite basics IV

Low level aspects I: record and data representation
Ada

type UART_Baud is (b_9600, b_115200, b_921600) with Size => 2
for UART_Baud use (b_9600 => 2#00#, b_115200 => 2#01#, b_021600 => 2#10#)

type UART_Speed is record
UART1 : UART_Baud;
UART2 : UART_Baud;
UART3 : UART_Baud;
end record with Bit_Order => Low_Order_First, Size => 16

36 /57

The type atlas: the composite basics IV

Low level aspects I: record and data representation
Ada

type UART_Baud is (b_9600, b_115200, b_921600) with Size => 2
for UART_Baud use (b_9600 => 2#00#, b_115200 => 2#01#, b_921600 => 2#10#)
type UART_Speed is record
UART1 : UART_Baud;
UART2 : UART_Baud;
UART3 : UART_Baud;
end record with Bit_Order => Low_Order_First, Size => 16

for UART_Speed use record -- Bit-level data layout representation!
UART1 at ©® range 0 .. 1
UART2 at O range 4 .. 6,
UART3 at 1 range @ .. 1,

end record;

36 /57

The type atlas: the composite basics IV

Low level aspects I: record and data representation
Ada

type UART_Baud is (b_9600, b_115200, b_921600) with Size => 2
for UART_Baud use (b_9600 => 2#00#, b_115200 => 2#01#, b_921600 => 2#10#)
type UART_Speed is record
UART1 : UART_Baud; UART2 : UART_Baud; UART3 : UART_Baud;
end record with Bit_Order => Low_Order_First, Size => 16
for UART_Speed use record -- Bit-level data layout representation!
UART1 at ©® range 0 .. 1
UART2 at O range 4 .. 6;
UART3 at 1 range 0 .. 1;
end record;

UART_Speed_Reg : aliased UART_Speed
with Address => System'To_Address(16#8002001#), Volatile_Full_Access

36 /57

The type atlas: the composite basics IV

Low level aspects I: record and data representation
Ada

type UART_Speed is record
UART1 : UART_Baud; UART2 : UART_Baud; UART3 : UART_Baud;
end record with Bit_Order => Low_Order_First, Size => 16
for UART_Speed use record -- Bit-level data layout representation!
UART1 at ©® range 0 .. 1
UART2 at O range 4 .. 6,
UART3 at 1 range @ .. 1,
end record;

UART_Speed_Reg : aliased UART_Speed

with Address => System'To_Address(16#8002001#), Volatile_Full_Access

UART_Speed_Reg.UART1 b_115200;

36 /57

The type atlas: the composite basics IV

Low level aspects II: comparison to C/C++ & Rust

Ada

= Low-level access

= Low-level abstractions

= Perfect mapping: high-level <> low-level
= Readable

= Formally verifiable with SPARK

37157

The type atlas: the composite basics IV

Low level aspects II: comparison to C/C++ & Rust

Ada

Low-level access

Low-level abstractions

Perfect mapping: high-level <> low-level
Readable

Formally verifiable with SPARK

Check out SweetAda for amazing low-level

and high-level stuff in a ton of boards and
arches (x86, ARM, RISC-V, M86K, SuperH,
MicroBlaze, NioslII...)

Example: HiFive rev B (RISC-V) Alternate Low-
Frequency Clock (LFALTCLK)

37157

https://github.com/gabriele-galeotti/SweetAda
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247

The type atlas: the composite basics IV

Low level aspects II: comparison to C/C++ & Rust

Ada

Low-level access

Low-level abstractions

Perfect mapping: high-level <> low-level
Readable

Formally verifiable with SPARK

Check out SweetAda for amazing low-level

and high-level stuff in a ton of boards and
arches (x86, ARM, RISC-V, M86K, SuperH,
MicroBlaze, NioslII...)

Example: HiFive rev B (RISC-V) Alternate Low-
Frequency Clock (LFALTCLK)

C/C++

Low-level access (bit fields, bit operations)
Poor low-level abstractions (get/setters, OOP)
High-level to low-level mapping is manual
Not readable

Bad typing checks

37157

https://github.com/gabriele-galeotti/SweetAda
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247

The type atlas: the composite basics IV

Low level aspects II: comparison to C/C++ & Rust

Ada

= Low-level access

= Low-level abstractions

= Perfect mapping: high-level <> low-level
= Readable

= Formally verifiable with SPARK

Check out SweetAda for amazing low-level

and high-level stuff in a ton of boards and
arches (x86, ARM, RISC-V, M86K, SuperH,
MicroBlaze, NioslII...)

Example: HiFive rev B (RISC-V) Alternate Low-

Frequency Clock (LFALTCLK)

C/C++

Low-level access (bit fields, bit operations)
Poor low-level abstractions (get/setters, OOP)
High-level to low-level mapping is manual
Not readable

Bad typing checks

Rust

Low-level access

Poor low-level abstractions (get/setters, impl)

High-level to low-level mapping is manual
Not readable

Gooder typing checks, but unsafe, muts.. 35, o5

https://github.com/gabriele-galeotti/SweetAda
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247

Before we continue...

Why do we care so much about data/Types?

39/57

Why do we care so much about data/Types?

Data is "50%" of a program. Types help us improve that
aspect!

Liquid Types

Liquid Types

Program

(Functions &
Procedures)

39/57

Why do we care so much about data/Types?

Data is "50%" of a program. Types help us improve that
aspect!

Liquid Types

Liquid Types

Program

(Functions &
Procedures)

A good data foundation is the stone on which to build everything else! 2957

Are we done with types?

No, fuck you, more types!!!

The type atlas: the not so very basics I

Access types I: pointers more or less
Ada

type Int_Acc is access Integer;

41 /57

The type atlas: the not so very basics I

Access types I: pointers more or less
Ada

type Int_Acc is access Integer;

type NN_Int_Acc is not null access Integer;
type Better_Acc is new not null Int_Acc;

41 /57

The type atlas: the not so very basics I

Access types I: pointers more or less
Ada

type Int_Acc is access Integer;
type NN_Int_Acc is not null access Integer;
type Better_Acc is new not null Int_Acc;

My_Var_Acc : not null Int_Acc S'Access;

41 /57

The type atlas: the not so very basics I

Access types I: pointers more or less
Ada

type Int_Acc is access Integer;

type NN_Int_Acc is not null access Integer;
type Better_Acc is new not null Int_Acc;

My_Var_Acc : not null Int_Acc S'Access;

type Global_Int_Acc is access all Integer;

41 /57

The type atlas: the not so very basics I

Access types I: pointers more or less
Ada

type Int_Acc is access Integer;

type NN_Int_Acc is not null access Integer;
type Better_Acc is new not null Int_Acc;
My_Var_Acc : not null Int_Acc S'Access;

type Global_Int_Acc is access all Integer;
type Nice_Acc 1s access constant Integer;

41 /57

The type atlas: the not so very basics I

Access types I: pointers more or less
Ada

type Int_Acc is access Integer;

type NN_Int_Acc is not null access Integer;
type Better_Acc is new not null Int_Acc;
My_Var_Acc : not null Int_Acc S'Access;

type Global_Int_Acc is access all Integer;
type Nice_Acc 1s access constant Integer;

type Callback_F is access function (A: Integer) return Natural;
type Callback_P is access procedure (A: in out Integer);

41 /57

The type atlas: the not so very basics I

Access types II: working with access

Ada

type Int_Acc is access Integer;
Int_1, Int_2, Int_3 : Int_Acc;

42 /57

The type atlas: the not so very basics I

Access types II: working with access

Ada

type Int_Acc is access Integer;
Int_1, Int_2, Int_3 : Int_Acc;

Int_1 new Integer,
Int_2 new Integer'(10);

42 /57

The type atlas: the not so very basics I

Access types II: working with access

Ada

type Int_Acc is access Integer;
Int_1, Int_2, Int_3 : Int_Acc;

Int_1 new Integer,
Int_2 new Integer'(10);

Int_3 Int_1; Int_1 null;
Int_3.all Int_2.all;

42 /57

The type atlas: the not so very basics I

Access types II: working with access

Ada

type Int_Acc is access Integer;
Int_1, Int_2, Int_3 : Int_Acc;

Int_1 new Integer,
Int_2 new Integer'(10);

Int_3 Int_1; Int_1 null;
Int_3.all Int_2.all;

procedure Free is new Ada.Unchecked_Deallocation -- Unchecked as it may be dangerous
Object => Integer, Name => Int_Acc
Free(Int_3); Free(Int_2); Free(Int_1);

42 /57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

Int_3 Int_1; Int_1 null;
Int_2.all Int_1.all;

43 /57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

Int_3 Int_1; Int_1 null;
Int_2.all Int_1.all;

43 /57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

Int_3 Int_1; Int_1 null;
Int_2.all Int_1.all;

type Lim_Int_Acc is limited record
V : Int_Acc;
end record;

43 /57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

type Lim_Int_Acc is limited record
V : Int_Acc;
end record;

Int_4, Int_5 : Lim_Int_Acc;
Int_4.V new Integer'(5);

Int_5 Int_4;
if Int 5 = Int_4 then

43 /57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

type Lim_Int_Acc is limited record
V : Int_Acc;
end record;

Int_4, Int_5 : Lim_Int_Acc;
Int_4.V new Integer'(5);

Int_5 Int_4;
if Int 5 = Int_4 then

There is so much more... See limited types in Learn.AdaCore

43 /57

https://learn.adacore.com/courses/advanced-ada/parts/resource_management/limited_types.html

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

type My_Class is tagged null record;

44 /57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

type My_Class is tagged null record;

type Derived 1is new My_Class with record
A : Integer
end record;

44 /57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

type My_Class is tagged null record;

type Derived 1is new My_Class with record
A : Integer
end record;

Obj1 : My_Class;

Obj2 : Derived (A => 12);
Obj3 : My_Class Obj2;

44 /57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

type My_Class is tagged null record;

type Derived
A

Integer

end record;

Obj1 :
Obj2 :
Obj3 :
Obj4 :
Obj5 :

My_Class;

Derived

My_Class
My_Class
My_Class

'Class
'Class

is new My_Class with record

(A => 12);
Obj2;
Obj2;
Obj1;

44 /57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

type My_Class is tagged null record;

type Derived 1is new My_Class with record
A : Integer

end record;

Obj1 : My_Class;

Obj2 : Derived (A => 12);
Obj4 : My_Class'Class 0bj2;

Obj5 : My_Class'Class Obj1;

procedure Foo (Self in out My_Class

overriding
procedure Foo (Self in out Derived

44 /57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

Obj1 :
Obj2 :
Obj4 :
Obj5 :

My_Class;
Derived
My_Class'Class
My_Class'Class

procedure Foo (Self

procedure Foo (Self

Foo(0Obj1);
Foo(0bj2);
Foo(0bj4);
Foo(0Obj5);

(A => 12);
0bj2;
Obj1;

in out My_Class
in out Derived

44 /57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

Obj1 :
Obj2 :
Obj4 :
Obj5 :

My_Class;
Derived
My_Class'Class
My_Class'Class

procedure Foo (Self
procedure Foo (Self

Obj1.Foo;
Obj2.Foo0;
Obj4.Foo;
Obj5.Foo0;

(A => 12);
0bj2;
Obj1;

in out My_Class
in out Derived

44 /57

The type atlas: the not so very basics III
Tagged types II: abstract data types and interfaces

Ada

type Set is abstract tagged null record;
function Union(Left, Right Set) return Set 1is abstract

45 /57

The type atlas: the not so very basics III
Tagged types II: abstract data types and interfaces

Ada

type Set is abstract tagged null record;
function Union(Left, Right Set) return Set 1is abstract

type Queue is limited interface;

type Synchronized_Queue is synchronized interface and Queue;

45 /57

The type atlas: the not so very basics III
Tagged types II: abstract data types and interfaces

Ada

type Set is abstract tagged null record;
function Union(Left, Right Set) return Set 1is abstract

type Queue is limited interface;

type Synchronized_Queue is synchronized interface and Queue;

type Serial_Device is task interface;
procedure Read (Dev in Serial Device; C out Character) 1is abstract

45 /57

The type atlas: the not so very basics III
Tagged types II: abstract data types and interfaces

Ada

type Set is abstract tagged null record;
function Union(Left, Right Set) return Set 1is abstract

type Queue is limited interface;

type Synchronized_Queue is synchronized interface and Queue;

type Serial_Device is task interface;
procedure Read (Dev in Serial_Device; C out Character) 1is abstract

Recomended read: Ada 2005 rationale (interfaces)

45 /57

https://www.adaic.org/resources/add_content/standards/05rat/html/Rat-2-4.html

The type atlas: the not so very basics III

Tagged types III: where is the encapsulation???

Ada’s modular nature for the win!!
Ada

package Person 1is
type Object is tagged private
procedure Display (O Object

private
type Object is tagged
record
Name String (1 .. 30

Gender Gender_Type
end record
end Person

More on packages later 46 /57

The type atlas: the not so very basics IIII

Controlled types (akin to RAII in C++): automatic

management of data
Ada

with Ada.Finalization

type T is new Ada.Finalization.Controlled with ... record
procedure Initialize (E in out T

procedure Adjust E in out T
procedure Finalize E in out T

47157

The type atlas: the not so very basics IIII

Controlled types (akin to RAII in C++): automatic

management of data
Ada

with Ada.Finalization

type T is new Ada.Finalization.Controlled with ... record

procedure Initialize (E in out T
procedure Adjust E in out T
procedure Finalize E in out T

There is so much more... See controlled types in Learn.AdaCore.

https://learn.adacore.com/courses/advanced-ada/parts/resource_management/controlled_types.html
https://www.adacore.com/blog/gnat-pro-25-new-features-platforms-and-tools

The type atlas: more types in future sections

We still have not seen...

= private types - packages
= task types -> tasking
= protected types - tasking

= exception "types" > exceptions

48 /1 57

The type atlas: more types in future sections

We still have not seen...

= private types - packages
= task types -> tasking
= protected types - tasking

= exception "types" > exceptions

Types matter, it is not just
Ada

= JS - TypeScript

= Python - annotated Python

= Rust’s efforts in better typing

= C++ efforts in better types and restrictions

48 /1 57

The type atlas: more types in future sections

We still have not seen...

= private types - packages
= task types -> tasking
= protected types - tasking

= exception "types" > exceptions

Types matter, it is not just
Ada

= JS - TypeScript

= Python - annotated Python

= Rust’s efforts in better typing

= C++ efforts in better types and restrictions

Remeber

Data matters

Model your problem space - 50% solved
problem

Leverage type relationships

Leverage attributes and aspects!

= They are incredibly powerful

Good types make your code more readable and
self-documenting

Good data modelling (types) allows for much

easier formal verification (SPARK)

48 /1 57

Functions, procedures and exceptions

49 /57

Packages

50/57

Generics

51/57

Tasks

52 /57

Liquid types, contracts and proves! Fuck yeah!

53/57

Going beyond, more resources

54 /57

Ada also sucks balls

55/57

Thanks to...

= Mona Sans & Monaspace Neon fonts

= The wider Ada community

= The sli.dev presentation engine

= The wider open source (libre) software community
= My fucking self

= Zemfira for being a cool girl

56 /57

https://github.com/mona-sans
https://monaspace.githubnext.com/
https://sli.dev/

Thank you!

Questions?

