
An unhinged introduction to
Ada/SPARK

A real showcase of the Ada/SPARK language
Fernando Oleo Blanco - Irvise

https://irvise.xyz/
https://github.com/Irvise

2 / 57

Dis-fucking-claimer

Don’t take it too seriously
This is supposed to be entretaining too

My words are mine only

3 / 57

Join in for the ride!

4 / 57

Table of contents
1. Why a presentation like this?

2. A 60 seconds overview of Ada
3. Types, types, types aaaandddd… more types! Also, data!

4. Functions, procedures and exceptions

5. Packages
6. Generics

7. Tasks

8. Liquid types, contracts and proves! Fuck yeah!

9. Going beyond, more resources
10. Ada also sucks balls

5 / 57

Why a presentation like this?

5 / 57

Why a presentation like this?
People really do not know how powerful Ada/SPARK is

5 / 57

Why a presentation like this?
People really do not know how powerful Ada/SPARK is

Most presentations are only introductory
The advance stuff is what makes Ada great!

5 / 57

Why a presentation like this?
People really do not know how powerful Ada/SPARK is

Most presentations are only introductory
The advance stuff is what makes Ada great!

To make a direct comparison with modern C++ and Rust

5 / 57

Why a presentation like this?
People really do not know how powerful Ada/SPARK is

Most presentations are only introductory
The advance stuff is what makes Ada great!

To make a direct comparison with modern C++ and Rust

Because Ada/SPARK is wonderful

5 / 57

Why a presentation like this?
People really do not know how powerful Ada/SPARK is

Most presentations are only introductory
The advance stuff is what makes Ada great!

To make a direct comparison with modern C++ and Rust

Because Ada/SPARK is wonderful

6 / 57

NVIDIA?
NVIDIA — Securing the Future of Safety and Security of Embedded Software (Captioned)NVIDIA — Securing the Future of Safety and Security of Embedded Software (Captioned)

https://www.youtube.com/watch?v=2YoPoNx3L5E

6 / 57

NVIDIA?
DEF CON 33 - How to secure unique ecosystem shipping 1 billion+ cores? - Adam ZabrocDEF CON 33 - How to secure unique ecosystem shipping 1 billion+ cores? - Adam Zabroc……

https://www.youtube.com/watch?v=KhWtkZmOPn4

6 / 57

NVIDIA?
DEF CON 33 - How to secure unique ecosystem shipping 1 billion+ cores? - Adam ZabrocDEF CON 33 - How to secure unique ecosystem shipping 1 billion+ cores? - Adam Zabroc……

NVIDIA ISO-26262 SPARK guidelines. Also, NVIDIA certifies to SIL-4 a 7 MLOC OS written in Ada/SPARK
(2025). More information in this ACM article (2024).

https://www.youtube.com/watch?v=KhWtkZmOPn4
https://nvidia.github.io/spark-process/
https://www.eenewseurope.com/en/nvidia-drives-ada-and-spark-into-driverless-cars/
https://cacm.acm.org/research/co-developing-programs-and-their-proof-of-correctness/

7 / 57

Follow along and test the features!

Learn.AdaCore

LEARN.ADACORE
.COM
 Edit on GitHub

What is Ada and
SPARK?
Ada is a state-of-the art programming language

Compiler Explorer/Godbolt

Source Editor: C++ source #1
// Type your code here, or load an example.

int square(int num) {

 return num * num;

}

Compiler Output: x86-64 gcc 15.2
(Editor #1)
Flags:

square(int):

 push rbp

New Privacy Policy. Please
take a moment to read it

Last changed on: 8/2/2025, 11:20:20
PM (diff)

Compiler Explorer
Privacy Policy
Thanks for your interest in what
Compiler Explorer does with your
data. Data protection is really

https://learn.adacore.com/
https://github.com/AdaCore/learn
https://github.com/AdaCore/learn
https://godbolt.org/
https://godbolt.org/
https://github.com/compiler-explorer/compiler-explorer/commit/ef264acac

8 / 57

A 60 seconds overview of Ada

Credit: Jean-Pierre Rosen

9 / 57

A 60 seconds overview of Ada II
Ada is an open ISO standard (ISO/IEC
8652)

Ada 83 (ANSI/MIL-STD-1815A): 348 pages (US
letter)

Ada 2012: 832 pages (A4)

Ada 2022: 1048 pages (A4)

There is a "Rationale"/Annotated (AARM) version
that explains all decissions made

Meant to be used by all Ada programmers!!!

https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub119.pdf
https://www.adaic.org/ada-resources/standards/ada12/
https://www.adaic.org/ada-resources/standards/ada22/

9 / 57

A 60 seconds overview of Ada II
Ada is an open ISO standard (ISO/IEC
8652)

Ada 83 (ANSI/MIL-STD-1815A): 348 pages (US
letter)

Ada 2012: 832 pages (A4)

Ada 2022: 1048 pages (A4)

There is a "Rationale"/Annotated (AARM) version
that explains all decissions made

Meant to be used by all Ada programmers!!!

C/C++ are ISO standards

C90 (ISO/IEC 9899): 219 pages (A4)

C23: 758 pages (A4)

C++98 (ISO/IEC 14882, not open): 732 pages (A4)

C++23: 2104 pages (A4)

Standard not meant to be read by the general
public (ISOCPP). Only drafts available in Github

https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub119.pdf
https://www.adaic.org/ada-resources/standards/ada12/
https://www.adaic.org/ada-resources/standards/ada22/
https://www.iso.org/es/contents/data/standard/01/77/17782.html
https://www.iso.org/es/contents/data/standard/08/20/82075.html
https://www.iso.org/es/contents/data/standard/02/58/25845.html
https://www.iso.org/es/contents/data/standard/08/36/83626.html
https://isocpp.org/std/the-standard
https://github.com/cplusplus/draft

9 / 57

A 60 seconds overview of Ada II
Ada is an open ISO standard (ISO/IEC
8652)

Ada 83 (ANSI/MIL-STD-1815A): 348 pages (US
letter)

Ada 2012: 832 pages (A4)

Ada 2022: 1048 pages (A4)

There is a "Rationale"/Annotated (AARM) version
that explains all decissions made

Meant to be used by all Ada programmers!!!

C/C++ are ISO standards

C90 (ISO/IEC 9899): 219 pages (A4)

C23: 758 pages (A4)

C++98 (ISO/IEC 14882, not open): 732 pages (A4)

C++23: 2104 pages (A4)

Standard not meant to be read by the general
public (ISOCPP). Only drafts available in Github

Rust is standarised (no ISO)

Added in 2023. Found in The Rust Reference.

New releases every 6 weeks… Does not cover
STL… 849 pages (no official pdf). There is
Ferrocene…

https://nvlpubs.nist.gov/nistpubs/Legacy/FIPS/fipspub119.pdf
https://www.adaic.org/ada-resources/standards/ada12/
https://www.adaic.org/ada-resources/standards/ada22/
https://www.iso.org/es/contents/data/standard/01/77/17782.html
https://www.iso.org/es/contents/data/standard/08/20/82075.html
https://www.iso.org/es/contents/data/standard/02/58/25845.html
https://www.iso.org/es/contents/data/standard/08/36/83626.html
https://isocpp.org/std/the-standard
https://github.com/cplusplus/draft
https://github.com/rust-lang/rfcs/pull/3355
https://doc.rust-lang.org/reference/
https://github.com/ferrocene/ferrocene

Lets get started fucking
dammit!

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t {
 ...
 float life;
} Player;

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t {
 ...
 float life = 100.0; // C++11
} Player;

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Player_T is record
 ...
 Life : Float; -- Naïve approach
end record; -- Ada 83

Player : Player_T;

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record
 ...
 Life : Life_T;
end record; -- Ada 83

Player : Player_T;

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record
 ...
 Life : Life_T := 100.0;
end record; -- Ada 83

Player : Player_T;

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record
 ...
 Life : Life_T := Life_T'Last;
end record; -- Ada 83

Player : Player_T;

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record
 ...
 Life : Life_T := Life_T'Last;
end record; -- Ada 83

Player : Player_T;
Player.Life := 1000.0; -- Runtime exception
 -- Comp-time warning
 -- SPARK: error

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record
 ...
 Life : Life_T := Life_T'Last;
end record; -- Ada 83

Player : Player_T;
Player.Life := 1000.0; -- Runtime exception
 -- Comp-time warning
 -- SPARK: error
Player.Life := -1000.0; -- Same as above

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record
 ...
 Life : Life_T := Life_T'Last;
end record; -- Ada 83

Player : Player_T;
Player.Life := 1000.0; -- Runtime exception
 -- Comp-time warning
 -- SPARK: error
Player.Life := -1000.0; -- Same as above
Player.Life := 100; -- Compile time error

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record
 ...
 Life : Life_T := Life_T'Last;
end record; -- Ada 83

Player : Player_T;
Player.Life := 1000.0; -- Runtime exception
 -- Comp-time warning
 -- SPARK: error
Player.Life := -1000.0; -- Same as above
Player.Life := Life_T(100);

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

11 / 57

Types, types, types aaaandddd… more types! Also,
data!
Lets start with an example. How do you declare a player’s life in a videogame?

Implicit conversions considered harmful -
Jason Turner - NDC TechTown 2025

C++

struct Player_t {
 ...
 const float MAX_LIFE = 100.0;
 float life = MAX_LIFE; // C++11
} Player;
...

Player.life = 1000.0; // All good?
Player.life = -1000.0; // All good!?
Player.life = 100; // Oh, yeah, that...

Ada

type Life_T is digits 6 range 0.0 .. 100.0;
type Player_T is record
 ...
 Life : Life_T := Life_T'Last;
end record; -- Ada 83

Player : Player_T;
Player.Life := 1000.0; -- Runtime exception
 -- Comp-time warning
 -- SPARK: error
Player.Life := -1000.0; -- Same as above
-- Note: runtime checks can be turned off,
-- but it is not recommended!

https://www.youtube.com/watch?v=UECI6Q4bqWg
https://www.youtube.com/watch?v=UECI6Q4bqWg

12 / 57

The type atlas: the very basics I
Ada

-- Ada 83
type My_Enum is (On, Off, Unknown); -- Enum, it is not numeric!!!

12 / 57

The type atlas: the very basics I
Ada

-- Ada 83
type My_Enum is (On, Off, Unknown); -- Enum, it is not numeric!!!

type My_Int is range -10 .. 2**8; -- Integer, range must be increasing
type My_Float is digits 10; -- 100.00003, "digits" is the precission
type My_Fl2 is digits 10 range 0.0 .. 1.0; -- 0.3634

12 / 57

The type atlas: the very basics I
Ada

-- Ada 83
type My_Enum is (On, Off, Unknown); -- Enum, it is not numeric!!!

type My_Int is range -10 .. 2**8; -- Integer, range must be increasing
type My_Float is digits 10; -- 100.00003, "digits" is the precission
type My_Fl2 is digits 10 range 0.0 .. 1.0; -- 0.3634

type My_Fix is delta 0.5 range -1.5 .. 2.0; -- Fixed point numbers!!

12 / 57

The type atlas: the very basics I
Ada

-- Ada 83
type My_Enum is (On, Off, Unknown); -- Enum, it is not numeric!!!

type My_Int is range -10 .. 2**8; -- Integer, range must be increasing
type My_Float is digits 10; -- 100.00003, "digits" is the precission
type My_Fl2 is digits 10 range 0.0 .. 1.0; -- 0.3634

type My_Fix is delta 0.5 range -1.5 .. 2.0; -- Fixed point numbers!!

-- Ada 95
type My_Mod is mod 3; -- 0, 1, 2, 0, 1, 2...
type My_Decimal is delta 10.0 ** (-4) digits 20; -- Decimal types!

12 / 57

The type atlas: the very basics I

Notice that all type declarations are different!
This will be important when we get to generics

Ada

-- Ada 83
type My_Enum is (On, Off, Unknown); -- Enum, it is not numeric!!!

type My_Int is range -10 .. 2**8; -- Integer, range must be increasing
type My_Float is digits 10; -- 100.00003, "digits" is the precission
type My_Fl2 is digits 10 range 0.0 .. 1.0; -- 0.3634

type My_Fix is delta 0.5 range -1.5 .. 2.0; -- Fixed point numbers!!

-- Ada 95
type My_Mod is mod 3; -- 0, 1, 2, 0, 1, 2...
type My_Decimal is delta 10.0 ** (-4) digits 20; -- Decimal types!

13 / 57

The type atlas: the very basics II
Some built in types

Ada

-- Ada does some basic type inference

Some_Big_Int : constant := 344_333_322_444; -- Notice the underscores!
Some_Float : constant := 1.3566;

-- We can declare "anonymous" ranges too!
Some_Range : Integer range 1 .. 10 := 4;

-- We can have multiple declarations too
F_1, F_2, F_3 : Float := 0.0;

13 / 57

The type atlas: the very basics II
Some built in types

Ada

type Boolean is (True, False); -- Enum

type Integer is -- Implementation-defined, at least -2**15 + 1 .. 2**15 -1
type Natural is range 0 .. Integer'Last; -- Non-negative numbers
type Positive is range 1 .. Integer'Last; -- Default range for arrays

type Float is -- Implementation-defined

type Character is (..., 'A', 'B', etc.); -- ASCII
type Wide_Character is (...);
type Wide_Wide_Character is (...);

13 / 57

The type atlas: the very basics II
Some built in types

For more info, see Ada Reference Manual (ARM) Appendix A.1.

Also, there are Long_ and Long_Long_ variants for Integer and Float .

Ada

type Boolean is (True, False); -- Enum

type Integer is -- Implementation-defined, at least -2**15 + 1 .. 2**15 -1
type Natural is range 0 .. Integer'Last; -- Non-negative numbers
type Positive is range 1 .. Integer'Last; -- Default range for arrays

type Float is -- Implementation-defined

type Character is (..., 'A', 'B', etc.); -- ASCII
type Wide_Character is (...);
type Wide_Wide_Character is (...);

https://ada-rapporteur-group.github.io/ARM/Ada_2022/RM-A-1.html

14 / 57

The type atlas: the very basics III
Leveraging type relationships

Ada

-- Ada 83
type Grade is range 0 .. 10;
subtype Failure is Grade range 0 .. 4; -- Compatible with Grade, but restricted range

14 / 57

The type atlas: the very basics III
Leveraging type relationships

Ada

-- Ada 83
type Grade is range 0 .. 10;
subtype Failure is Grade range 0 .. 4; -- Compatible with Grade, but restricted range

type Math_Grade is new Grade; -- Binary ideantical to Grade, incompatible
type Econ_Grade is new Grade; -- Binary ideantical to Grade, incompatible

14 / 57

The type atlas: the very basics III
Leveraging type relationships

Ada

-- Ada 83
type Grade is range 0 .. 10;
subtype Failure is Grade range 0 .. 4; -- Compatible with Grade, but restricted range

type Math_Grade is new Grade; -- Binary ideantical to Grade, incompatible
type Econ_Grade is new Grade; -- Binary ideantical to Grade, incompatible

type Sports_Grade is new Grade range 1 .. 6; -- Binary identical to Grade,
 -- incompatible with all others
 -- restricted rage

14 / 57

The type atlas: the very basics III
Leveraging type relationships

Ada

-- Ada 83
type Grade is range 0 .. 10;
subtype Failure is Grade range 0 .. 4; -- Compatible with Grade, but restricted range

type Math_Grade is new Grade; -- Binary ideantical to Grade, incompatible
type Econ_Grade is new Grade; -- Binary ideantical to Grade, incompatible

type Sports_Grade is new Grade range 1 .. 6; -- Binary identical to Grade,
 -- incompatible with all others
 -- restricted rage

type Week is (Mon, Tue, Wed, Thu, Fri, Sat, Sun);
subtype Work_Days is Days range Mon .. Fri; -- Yes, enums have ranges too!

15 / 57

The type atlas: the very basics IIII
Working with type relationships

Ada

-- Ada 83
Some_Grade : Grade := 7;
Some_Fail : Failure := 4; -- Reminder: a subtype

Some_Grade := Some_Fail; -- Ok! It is always okay!

15 / 57

The type atlas: the very basics IIII
Working with type relationships

Ada

-- Ada 83
Some_Grade : Grade := 7;
Some_Fail : Failure := 4; -- Reminder: a subtype

Some_Grade := Some_Fail; -- Ok! It is always okay!

Some_Grade := 7;
Some_Fail := Some_Grade: -- Allowed by compiler as the types are compatible
 -- Can cause runtime exception!!
 -- In this case, it will!

15 / 57

The type atlas: the very basics IIII
Working with type relationships

Ada

-- Ada 83
Some_Grade : Grade := 7;
Some_Fail : Failure := 4; -- Reminder: a subtype

Some_Grade := Some_Fail; -- Ok! It is always okay!

Some_Grade := 7;
Some_Fail := Some_Grade: -- Allowed by compiler as the types are compatible
 -- Can cause runtime exception!!
 -- In this case, it will!

-- Ada 2012
Some_Fail := (if Some_Grade in Failure then Some_Grade else ...);
 -- "in" is the most powerful keyword IMHO

15 / 57

The type atlas: the very basics IIII
Working with type relationships

Ada

-- Ada 83
Some_Math_Grade : Math_Grade := 7; -- Reminder: "new" type of Grade
Some_Econ_Grade : Econ_Grade := 7; -- Reminder: "new" type of Grade
Some_Grade : Grade := 7;

15 / 57

The type atlas: the very basics IIII
Working with type relationships

Ada

-- Ada 83
Some_Math_Grade : Math_Grade := 7; -- Reminder: "new" type of Grade
Some_Econ_Grade : Econ_Grade := 7; -- Reminder: "new" type of Grade
Some_Grade : Grade := 7;

Some_Econ_Grade := Some_Grade; -- Compiler error!
 -- Incompatible types
Some_Math_Grade := Some_Econ_Grade; -- Compiler error!
 -- Incompatible types

15 / 57

The type atlas: the very basics IIII
Working with type relationships

Ada

-- Ada 83
Some_Math_Grade : Math_Grade := 7; -- Reminder: "new" type of Grade
Some_Econ_Grade : Econ_Grade := 7; -- Reminder: "new" type of Grade
Some_Grade : Grade := 7;

Some_Econ_Grade := Some_Grade; -- Compiler error!
 -- Incompatible types
Some_Math_Grade := Some_Econ_Grade; -- Compiler error!
 -- Incompatible types

Some_Math_Grade := Math_Grade(Some_Grade); -- Explicit casting needed
 -- No issues if range was not restricted

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

// C (old C++)
int My_Integer = -100;

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

// C (old C++)
const int MIN_VAL = -100;
int My_Integer = MIN_VAL;

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

// C (old C++)
const int MIN_VAL = -100;
const int MAX_VAL = 100;
int My_Integer = MIN_VAL;

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

// C++11
struct My_Int_T {
 const int MIN_VAL = -100;
 const int MAX_VAL = 100;
 int value = MIN_VAL;
} My_Integer; // Still no checks...

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

Okay, now... for real, I promise...

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

// C++ 20!!
template<int min, int max>
struct test
{
 consteval test(int v): value(v) {
 if(v < min || v > max) throw v;
 }
 int value, min, max;
};
int main()
{
 test<-100, 100> t1(2);
 test<-100, 100> t2(120); // Comp-time error!
} // Still no runtime checks

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

///// Runtime checks??
// Old C++
#include<limits>
std::numeric_limits<int>::min();
// Generic & machine related

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

///// Runtime checks??
// Old C++
#include<limits>
std::numeric_limits<int>::min();
// Generic & machine related

// C++20
#include<utility>
std::in_range<some_type>(some_value);
// Generic types
#include<ranges>
std::range::range;
// Ranged type, but not a "simple" type

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

///// Runtime checks??
// Old C++
#include<limits>
std::numeric_limits<int>::min();
// Generic & machine related

// C++20
#include<utility>
std::in_range<some_type>(some_value);
// Generic types
#include<ranges>
std::range::range;
// Ranged type, but not a "simple" type
// C++26 contracts are not for types!!

16 / 57

A first stop: comparison with C++

Ada

-- Ada 83
type My_Int_T is range -100 .. 100;
My_Integer : My_Int_T := My_Int_T'First;

cpp

///// Runtime checks??
// Old C++
#include<limits>
std::numeric_limits<int>::min();
// Generic & machine related

// C++20
#include<utility>
std::in_range<some_type>(some_value);
// Generic types
#include<ranges>
std::range::range;
// Ranged type, but not a "simple" type
// C++26 contracts are not for types!!

17 / 57

A first (v2) stop: comparison with Rust
Rust ranged integers

Available in nightly with the Ranged_Integers crate

Has been in development for years
There are still discussions going on

Will come to stable but… WHEN?

https://docs.rs/ranged_integers/latest/ranged_integers/
https://github.com/rust-lang/rfcs/issues/671

17 / 57

A first (v2) stop: comparison with Rust
Rust ranged integers

Available in nightly with the Ranged_Integers crate

Has been in development for years
There are still discussions going on

Will come to stable but… WHEN?

Rust’s other types?
Nothing still for floats (f16 , f32 …)

Discussions happened for fixed points, nothing official yet (though there are creates for them)

Obviously, no decimal

enum in Rust is cool :)

Strongly typed (expect aliases), and casting can be unexpected… See 1000 as u8
See The state of Rust trying to catch up with Ada (FOSDEM, 2025)

https://docs.rs/ranged_integers/latest/ranged_integers/
https://github.com/rust-lang/rfcs/issues/671
https://doc.rust-lang.org/rust-by-example/types/cast.html
https://archive.fosdem.org/2025/schedule/event/fosdem-2025-5356-the-state-of-rust-trying-to-catch-up-with-ada/

18 / 57

The type atlas: the very basics V
Type/Variable/etc attributes

Ada 2022 RM K.2 Language-Defined Attributes

Ada

-- Ada 83
Integer'First; -- Smallest number
Integer'Last; -- Largest number
Integer'Succ(3); -- Returns 4
Integer'Pred(3); -- Returns 2
Integer'Value("-10"); -- Returns -10
Boolean'Pos(False); -- Normally 0, but not mandatory (specially in hardened systems)
Boolean'Val(0); -- Would normally return False
My_Type'Size; -- Size in _bits_ of the type!

My_Var'Image; -- Returns the string representation of the type
My_Var'Access; -- Returns an access (pointer) to the variable

https://ada-rapporteur-group.github.io/ARM/Ada_2022/RM-K-2.html

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Ada 2012 (imho with better syntax, but they existed since 95)
type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0;

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Ada 2012 (imho with better syntax, but they existed since 95)
type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0;

type My_Smol_Enum is (Off, On) with Size => 1; -- Of course we care about size
I2C1 : My_Smol_Enum with Address => 16#01000#; -- Amazing for embedded

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Ada 2012 (imho with better syntax, but they existed since 95)
type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0;

type My_Smol_Enum is (Off, On) with Size => 1; -- Of course we care about size
I2C1 : My_Smol_Enum with Address => 16#01000#; -- Amazing for embedded

Smol_Var : Bit_1 with Address => I2C1'Address; -- Memory overlays for the win!

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Ada 2012 (imho with better syntax, but they existed since 95)
type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0;

type My_Smol_Enum is (Off, On) with Size => 1; -- Of course we care about size
I2C1 : My_Smol_Enum with Address => 16#01000#; -- Amazing for embedded

Smol_Var : Bit_1 with Address => I2C1'Address; -- Memory overlays for the win!

type My_Network is xxxxx with Bit_Oder => High_Order_First, -- Big Endian type!!
 Alignment => 4;
 -- for composite types, Scalar_Order may also be needed!!!

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Ada 2012 (imho with better syntax, but they existed since 95)
type My_Atomic_Num is digits 15 with Atomic, Default_Value => 0.0;

type My_Smol_Enum is (Off, On) with Size => 1; -- Of course we care about size
I2C1 : My_Smol_Enum with Address => 16#01000#; -- Amazing for embedded

Smol_Var : Bit_1 with Address => I2C1'Address; -- Memory overlays for the win!

type My_Network is xxxxx with Bit_Oder => High_Order_First, -- Big Endian type!!
 Alignment => 4;
 -- for composite types, Scalar_Order may also be needed!!!

type API1_Access is access API1_Type with Storage_Pool => API1_Storage_Pool;
 -- Yup, we also have pools/arenas for "pointers"

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- And there is so, so, so much more...

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

function MemCopy
 (Destination : System.Address;
 Source : System.Address;
 Length : Natural)
return Address
with
 Import, -- Calling from other binaries
 Convention => C, -- It is C code convention calls
 Link_Name => "memcpy", -- Symbol name
 Pre => Source /= Null_Address and then -- Contract based programming!
 Destination /= Null_Address and then -- Including when calling to
 not Overlapping (Destination, Source, Length),
 Post => MemCopy'Result = Destination; -- external functions!

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Formal specification/verification in Ada! Liquid types and contracts
-- ALL OF THIS IS ADA 2012!!!
type Even is new Natural with
 Dynamic_Predicate => Even mod 2 = 0; -- we write the actual properties of the data
type Odd is new Natural with
 Dynamic_Predicate => not in Even; -- again, the "in" keyword is amazing!

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Formal specification/verification in Ada! Liquid types and contracts
-- ALL OF THIS IS ADA 2012!!!
type Even is new Natural with
 Dynamic_Predicate => Even mod 2 = 0; -- we write the actual properties of the data
type Odd is new Natural with
 Dynamic_Predicate => not in Even; -- again, the "in" keyword is amazing!

type Prime is new Positive with
 Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Formal specification/verification in Ada! Liquid types and contracts
-- ALL OF THIS IS ADA 2012!!!
type Even is new Natural with
 Dynamic_Predicate => Even mod 2 = 0; -- we write the actual properties of the data
type Odd is new Natural with
 Dynamic_Predicate => not in Even; -- again, the "in" keyword is amazing!

type Prime is new Positive with
 Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

-- Prime as a function
function Is_Prime (N : Positive) return Boolean is
 (for all J in Positive range 2 .. N - 1 => N mod J /= 0);
type Prime_2 is new Positive with Dynamic_Predicate => (Is_Prime(Prime_2));

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Ada

-- Formal specification/verification in Ada! Liquid types and contracts
-- ALL OF THIS IS ADA 2012!!!
type Even is new Natural with
 Dynamic_Predicate => Even mod 2 = 0; -- we write the actual properties of the data
type Odd is new Natural with
 Dynamic_Predicate => not in Even; -- again, the "in" keyword is amazing!

type Prime is new Positive with
 Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

type Increasing_Array is array (Index) of Some_Number
 with Dynamic_Predicate => (for all I in Index =>
 (if I < Index'Last then Increasing_Array(I) < Increasing_Array(I+1))); -- Nice!

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Probably one of the coolest features of the language

Ada

-- Formal specification/verification in Ada! Liquid types and contracts
-- ALL OF THIS IS ADA 2012!!!
type Even is new Natural with
 Dynamic_Predicate => Even mod 2 = 0; -- we write the actual properties of the data
type Odd is new Natural with
 Dynamic_Predicate => not in Even; -- again, the "in" keyword is amazing!

type Prime is new Positive with
 Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

type Increasing_Array is array (Index) of Some_Number
 with Dynamic_Predicate => (for all I in Index =>
 (if I < Index'Last then Increasing_Array(I) < Increasing_Array(I+1))); -- Nice!

19 / 57

The type atlas: the very basics VI
Type/Variable/etc aspects

Aspects decouple implementation details from the problem

Ada

-- Formal specification/verification in Ada! Liquid types and contracts
-- ALL OF THIS IS ADA 2012!!!
type Even is new Natural with
 Dynamic_Predicate => Even mod 2 = 0; -- we write the actual properties of the data
type Odd is new Natural with
 Dynamic_Predicate => not in Even; -- again, the "in" keyword is amazing!

type Prime is new Positive with
 Dynamic_Predicate => (for all Divisor in 2 .. Prime / 2 => Prime mod Divisor /= 0);

type Increasing_Array is array (Index) of Some_Number
 with Dynamic_Predicate => (for all I in Index =>
 (if I < Index'Last then Increasing_Array(I) < Increasing_Array(I+1))); -- Nice!

20 / 57

Again, compare Ada to C++/Rust

20 / 57

Again, compare Ada to C++/Rust
The real problem of C++ - Klaus Iglberger - Meeting C++ 2025The real problem of C++ - Klaus Iglberger - Meeting C++ 2025

Bound safety? Type Safety? Initialization Safety? Lifetime safety? /—/ Now you care?

https://www.youtube.com/watch?v=QmNkbUgADBE

20 / 57

Again, compare Ada to C++/Rust
Catching Bugs Early: Validating C++ Contracts with Static Analysis - Peter Martin & Mike Catching Bugs Early: Validating C++ Contracts with Static Analysis - Peter Martin & Mike ……

Catching bugs early (C++26) you say?? /—/ NOW you care? Do bugs cost money NOW???

https://www.youtube.com/watch?v=3DDqDKaKmio

20 / 57

Again, compare Ada to C++/Rust
Three Cool Things in C++26: Safety, Reflection & std::execution - Herb Sutter - C++ on SeaThree Cool Things in C++26: Safety, Reflection & std::execution - Herb Sutter - C++ on Sea……

Safety & UB? Reflection (much more advance than Ada’s)? Concurrency and Parallelism???

https://www.youtube.com/watch?v=kKbT0Vg3ISw

You think that was a lot about
types???
Composite types

22 / 57

The type atlas: the composite basics I
Arrays I

Ada

-- Ada 83
type My_Index is range -10 .. 10;
type Int_Arr is array (My_Index) of Integer;
-- The Index can be any discrete type (Ints, Enums, Mods) and have any range

22 / 57

The type atlas: the composite basics I
Arrays I

Ada

-- Ada 83
type My_Index is range -10 .. 10;
type Int_Arr is array (My_Index) of Integer;
-- The Index can be any discrete type (Ints, Enums, Mods) and have any range

My_Array1 : Int_Arr := []; -- Uninitialised. Braces are from Ada 2022
My_Array2 : Int_Arr := [1, 2, 1, 2...]; -- Sequential initialization
My_Array3 : Int_Arr := [-10 | -8 | -6 ... => 1, -9 | -7 ... => 2]; -- Positional init

22 / 57

The type atlas: the composite basics I
Arrays I

Ada

-- Ada 83
type My_Index is range -10 .. 10;
type Int_Arr is array (My_Index) of Integer;
-- The Index can be any discrete type (Ints, Enums, Mods) and have any range

My_Array1 : Int_Arr := []; -- Uninitialised. Braces are from Ada 2022
My_Array2 : Int_Arr := [1, 2, 1, 2...]; -- Sequential initialization
My_Array3 : Int_Arr := [-10 | -8 | -6 ... => 1, -9 | -7 ... => 2]; -- Positional init
My_Array4 : Int_Arr := [others => 0]; -- Initialise all to 0
My_Array5 : Int_Arr := [-10 | -8 | -6 ... => 1, others => 2]; -- Mixed case

22 / 57

The type atlas: the composite basics I
Arrays I

Ada

-- Ada 83
type My_Index is range -10 .. 10;
type Int_Arr is array (My_Index) of Integer;
-- The Index can be any discrete type (Ints, Enums, Mods) and have any range

My_Array1 : Int_Arr := []; -- Uninitialised. Braces are from Ada 2022
My_Array2 : Int_Arr := [1, 2, 1, 2...]; -- Sequential initialization
My_Array3 : Int_Arr := [-10 | -8 | -6 ... => 1, -9 | -7 ... => 2]; -- Positional init
My_Array4 : Int_Arr := [others => 0]; -- Initialise all to 0
My_Array5 : Int_Arr := [-10 | -8 | -6 ... => 1, others => 2]; -- Mixed case

-- Ada 2022
My_Array6 : Int_Arr := [for I in My_Index'Range => Integer(My_Index)]; -- -10, -9...
My_Array7 : Int_Arr := [for I in 1 .. 3 => Integer(I), 5 .. 10 => 10, others => 0];

23 / 57

The type atlas: the composite basics I
Arrays II: unconstrained arrays

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer; -- "<>" means ellipsis

23 / 57

The type atlas: the composite basics I
Arrays II: unconstrained arrays

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer; -- "<>" means ellipsis

My_Int_Arr_Var : Int_Arr(1 .. 10) := [others => 0]; -- bounds given explicitly
My_Int_Arr_Var2 : Int_Arr := [1, 2, 3, 4]; -- bounds given by data
My_Int_Arr_Var3 : Int_Arr(1 .. A) := [others => 0]; -- bounds given at runtime!

23 / 57

The type atlas: the composite basics I
Arrays II: unconstrained arrays

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer; -- "<>" means ellipsis

My_Int_Arr_Var : Int_Arr(1 .. 10) := [others => 0]; -- bounds given explicitly
My_Int_Arr_Var2 : Int_Arr := [1, 2, 3, 4]; -- bounds given by data
My_Int_Arr_Var3 : Int_Arr(1 .. A) := [others => 0]; -- bounds given at runtime!

type Arr_Int_Arr is array (Positive range <>) of Int_Arr (1 .. 20);
 -- ^bounds need to be given!!
-- VERY IMPORTANT!! The bounds/range of arrays are an INTRINSIC PART of the type!!!

23 / 57

The type atlas: the composite basics I
Arrays II: unconstrained arrays

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer; -- "<>" means ellipsis

My_Int_Arr_Var : Int_Arr(1 .. 10) := [others => 0]; -- bounds given explicitly
My_Int_Arr_Var2 : Int_Arr := [1, 2, 3, 4]; -- bounds given by data
My_Int_Arr_Var3 : Int_Arr(1 .. A) := [others => 0]; -- bounds given at runtime!

type Arr_Int_Arr is array (Positive range <>) of Int_Arr (1 .. 20);
 -- ^bounds need to be given!!
-- VERY IMPORTANT!! The bounds/range of arrays are an INTRINSIC PART of the type!!!

type Bit_Matrix is array (Integer range <>, Integer range <>) of Boolean;

23 / 57

The type atlas: the composite basics I
Arrays II: unconstrained arrays

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer; -- "<>" means ellipsis

My_Int_Arr_Var : Int_Arr(1 .. 10) := [others => 0]; -- bounds given explicitly
My_Int_Arr_Var2 : Int_Arr := [1, 2, 3, 4]; -- bounds given by data
My_Int_Arr_Var3 : Int_Arr(1 .. A) := [others => 0]; -- bounds given at runtime!

type Arr_Int_Arr is array (Positive range <>) of Int_Arr (1 .. 20);
 -- ^bounds need to be given!!
-- VERY IMPORTANT!! The bounds/range of arrays are an INTRINSIC PART of the type!!!

type Bit_Matrix is array (Integer range <>, Integer range <>) of Boolean;
My_Mat'Range; My_Mat'Range(2); My_Arr'Length; My_Arr'First; My_Arr'Last;
-- Guess what all these attributes do?

24 / 57

The type atlas: the composite basics I
Arrays III: using mod s as index

Ada

-- Ada 95
type My_Mod is mod 7; -- 0, 1, 2, 3, 4, 5, 6
type Int_Ring is array (My_Mod) of Integer;

Int_Ring_Var : Int_Ring := [for I in My_Mod => Integer(I)];
Index : My_Mod := 6; -- Int_Ring_Var(Index) = 6;

Index := Index + 1;
Int_Ring_Var(Index) = 0; -- True due to modular type arithmetic!!

24 / 57

The type atlas: the composite basics I
Arrays III: using mod s as index

With mod types, it is mathematicaly imposible to cause an out
of bounds error!!!
There are no issues with ranges and we don’t have to use clases/methods!

Ada

-- Ada 95
type My_Mod is mod 7; -- 0, 1, 2, 3, 4, 5, 6
type Int_Ring is array (My_Mod) of Integer;

Int_Ring_Var : Int_Ring := [for I in My_Mod => Integer(I)];
Index : My_Mod := 6; -- Int_Ring_Var(Index) = 6;

Index := Index + 1;
Int_Ring_Var(Index) = 0; -- True due to modular type arithmetic!!

25 / 57

The type atlas: the composite basics I
Arrays IIII: using enums as index

Enums allow for extremely easy state machines and precise
iterations!

Ada

type RGBA is (Red, Green, Blue, Alpha);
type Pixel_T is array (RGBA) of Mod_256;

Pixel : Pixel_T := [Alpha => Mod_256'Last; others => 0];

for C in RGBA range Red .. Blue loop
 Pixel(C) := 100;
end loop;

26 / 57

The type atlas: the composite basics I
Arrays V: array slicing

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) := [others => 1];
My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2); -- Integer division!
My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);

26 / 57

The type atlas: the composite basics I
Arrays V: array slicing

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) := [others => 1];
My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2); -- Integer division!
My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);

-- Array slicing
My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. My_Int_Arr_Var'Last - 1) := [others => 2];

26 / 57

The type atlas: the composite basics I
Arrays V: array slicing

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) := [others => 1];
My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2); -- Integer division!
My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);

-- Array slicing
My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. My_Int_Arr_Var'Last - 1) := [others => 2];

-- Copies
My_Ann_Arr_Var2 := My_Int_Arr_Var (1 .. My_Int_Arr_Var'Last / 2);
My_Int_Arr_Var3 := My_Int_Arr_Var (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);
-- Direct copies are allowed!

26 / 57

The type atlas: the composite basics I
Arrays V: array slicing

Ada

-- This code is actually quite bad...
-- Lets refine it bit by bit and make it more idomatic

26 / 57

The type atlas: the composite basics I
Arrays V: array slicing

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) := [others => 1];
My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2); -- Integer division!
My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);

-- Array slicing
My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. My_Int_Arr_Var'Last - 1) := [others => 2];

-- Copies
My_Ann_Arr_Var2 := My_Int_Arr_Var (1 .. My_Int_Arr_Var'Last / 2);
My_Int_Arr_Var3 := My_Int_Arr_Var (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);

26 / 57

The type atlas: the composite basics I
Arrays V: array slicing

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) := [others => 1];
My_Int_Arr_Var2 : Int_Arr (1 .. My_Int_Arr_Var'Last / 2); -- Integer division!
My_Int_Arr_Var3 : Int_Arr (My_Int_Arr_Var'Last / 2 + 1 .. My_Int_Arr_Var'Last);

-- Array slicing
My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. My_Int_Arr_Var'Last - 1) := [others => 2];

-- Copies
My_Ann_Arr_Var2 := My_Int_Arr_Var (My_Int_Arr_Var2'Range);
My_Int_Arr_Var3 := My_Int_Arr_Var (My_Int_Arr_Var3'Range);

26 / 57

The type atlas: the composite basics I
Arrays V: array slicing

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) := [others => 1];
Last_Index renames My_Int_Arr_Var'Last;

My_Int_Arr_Var2 : Int_Arr (1 .. Last_Index / 2); -- Integer division!
My_Int_Arr_Var3 : Int_Arr (Last_Index / 2 + 1 .. Last_Index);

-- Array slicing
My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. Last_Index - 1) := [others => 2];

-- Copies
My_Ann_Arr_Var2 := My_Int_Arr_Var (My_Int_Arr_Var2'Range);
My_Int_Arr_Var3 := My_Int_Arr_Var (My_Int_Arr_Var3'Range);

26 / 57

The type atlas: the composite basics I
Arrays V: array slicing

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;
My_Int_Arr_Var : Int_Arr (1 .. 50) := [others => 1];
Last_Index renames My_Int_Arr_Var'Last;

My_Int_Arr_Var2 : Int_Arr (1 .. Last_Index / 2); -- Integer division!
My_Int_Arr_Var3 : Int_Arr (Positive'Succ(Last_Index / 2) .. Last_Index);

-- Array slicing
My_Int_Arr_Var (My_Int_Arr_Var'First + 1 .. Last_Index - 1) := [others => 2];

-- Copies
My_Ann_Arr_Var2 := My_Int_Arr_Var (My_Int_Arr_Var2'Range);
My_Int_Arr_Var3 := My_Int_Arr_Var (My_Int_Arr_Var3'Range);

27 / 57

The type atlas: the composite basics I
Arrays VI: Strings

Ada

-- Ada 83
Text : String; -- type String is (Positive range <>) of Character;

Text1 : String := "one"; -- Strings are not null terminated! C_Str is though
Text2 : String := "two";
Text3 : String := "three";

27 / 57

The type atlas: the composite basics I
Arrays VI: Strings

Ada

-- Ada 83
Text : String; -- type String is (Positive range <>) of Character;

Text1 : String := "one"; -- Strings are not null terminated! C_Str is though
Text2 : String := "two";
Text3 : String := "three";

Text2 := Text1; -- All good without any special functions!!
Text2 := Text3; -- Compile time error!!!
-- ^Length=3, ^Length=5, incompatible types!!

27 / 57

The type atlas: the composite basics I
Arrays VI: Strings

Ada

-- Ada 83
Text : String; -- type String is (Positive range <>) of Character;

Text1 : String := "one"; -- Strings are not null terminated! C_Str is though
Text2 : String := "two";
Text3 : String := "three";

Text2 := Text1; -- All good without any special functions!!
Text2 := Text3; -- Compile time error!!!
-- ^Length=3, ^Length=5, incompatible types!!

TextU : String := "こんにちは"; -- UTF-8 supported, but without special handling
 -- TextU'Length = 15!!

28 / 57

The type atlas: the composite basics I
Arrays VII: Ada and the stack, part one

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. B) := [others => 0]; -- B here is a VERY LARGE value

28 / 57

The type atlas: the composite basics I
Arrays VII: Ada and the stack, part one

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. B) := [others => 0]; -- B here is a VERY LARGE value
-- raised STORAGE_ERROR : stack overflow or erroneous memory access

28 / 57

The type atlas: the composite basics I
Arrays VII: Ada and the stack, part one

Ada (ab)uses the stack like crazy

It is great for performance, automatic memory management and ease of use
but… It does have its limitations (see Vector for a solution).

Read GNAT’s Stack Related Facilities for debugging, metrics and stack size configuration

Ada

-- Ada 83
type Int_Arr is array (Positive range <>) of Integer;

My_Int_Arr_Var : Int_Arr(1 .. B) := [others => 0]; -- B here is a VERY LARGE value
-- raised STORAGE_ERROR : stack overflow or erroneous memory access

https://docs.adacore.com/gnat_ugn-docs/html/gnat_ugn/gnat_ugn/gnat_and_program_execution.html#stack-related-facilities

29 / 57

The type atlas: the composite basics I
Arrays VIII: empty what?

Ada

-- Ada 83
type Some_Range is range 1 .. 0; -- Ranges must be increasing!!
 -- There is no error nor warning by the compiler???

29 / 57

The type atlas: the composite basics I
Arrays VIII: empty what?

Ada

-- Ada 83
type Some_Range is range 1 .. 0; -- Ranges must be increasing!!
 -- There is no error nor warning by the compiler???
 -- The empty set ∅

29 / 57

The type atlas: the composite basics I
Arrays VIII: empty what?

Ada

-- Ada 83
type Some_Range is range 1 .. 0; -- Ranges must be increasing!!
 -- There is no error nor warning by the compiler???
 -- The empty set ∅
type Null_Arr is array (Some_Range) of Integer; -- Allowed?! Even at runtime??

-- An empty array cannot hold data. They tend to happen at runtime.
-- Operations on them (generally) have no effect

29 / 57

The type atlas: the composite basics I
Arrays VIII: empty what?

Ada

-- Ada 83
type Some_Range is range 1 .. 0; -- Ranges must be increasing!!
 -- There is no error nor warning by the compiler???
 -- The empty set ∅
type Null_Arr is array (Some_Range) of Integer; -- Allowed?! Even at runtime??

-- An empty array cannot hold data. They tend to happen at runtime.
-- Operations on them (generally) have no effect

for I in Null_Arr'Range loop -- Null loop, nothing happens!
...
end loop;

30 / 57

The type atlas: the composite basics II
Records I: aka, structs

Ada

-- Ada 83
type Data is record
 Day : Integer range 1 .. 31;
 Month : Months;
 Year : Integer range 1 .. 3000 := 2026; -- Default values allowed
end record; -- Aka, your typical struct in other languages

30 / 57

The type atlas: the composite basics II
Records I: aka, structs

Ada

-- Ada 83
type Data is record
 Day : Integer range 1 .. 31;
 Month : Months;
 Year : Integer range 1 .. 3000 := 2026; -- Default values allowed
end record; -- Aka, your typical struct in other languages

-- Positional components
Ada_Birthday : Date := (10, December, 1815);
-- Named components
Leap_Day_2020 : Date := (Day => 29,
 Month => February,
 Year => 2020); -- Init by name

30 / 57

The type atlas: the composite basics II
Records I: aka, structs

Ada

-- Ada 83
type Data is record
 Day : Integer range 1 .. 31;
 Month : Months;
 Year : Integer range 1 .. 3000 := 2026; -- Default values allowed
end record; -- Aka, your typical struct in other languages

-- Positional components
Ada_Birthday : Date := (10, December, 1815);
-- Named components
Leap_Day_2020 : Date := (Day => 29,
 Month => February,
 Year => 2020); -- Init by name
type Empty is null record; -- Empty "container", it is quite useful!

31 / 57

The type atlas: the composite basics II
Records II: dynamic record sizes

Ada

-- Just lik arrays, record sizes can also be dynamic
Max_Len : constant Natural := Compute_Max_Len;
 -- ^ Not known at compile time

type Growable_Stack is record
 Items : Items_Array (1 .. Max_Len); -- Determined at runtime
 Len : Natural;
end record;
-- Once Max_Len is known, all record sizes will stay the same, just like arrays

32 / 57

The type atlas: the composite basics II
Records III: record discriminants

Ada

-- Discriminated records: they are different/discriminated by their input
type Square_Mat (Size : Positive) is record -- Unconstrained discriminant
 Mat : Matrix(1 .. Size, 1 .. Size);
end record;
type Buffer (Size : Buffer_Size := 100) is record -- Default initialized
 Pos : Buffer_Size := 0;
 Value : String(1 .. Size);
end record;

32 / 57

The type atlas: the composite basics II
Records III: record discriminants

Ada

-- Discriminated records: they are different/discriminated by their input
type Square_Mat (Size : Positive) is record -- Unconstrained discriminant
 Mat : Matrix(1 .. Size, 1 .. Size);
end record;
type Buffer (Size : Buffer_Size := 100) is record -- Default initialized
 Pos : Buffer_Size := 0;
 Value : String(1 .. Size);
end record;

Basis : Square_Mat(5); -- constrained, always 5 by 5
ILLEGAL : Square_Mat; -- illegal, a Square_Mat must be constrained

32 / 57

The type atlas: the composite basics II
Records III: record discriminants

Ada

-- Discriminated records: they are different/discriminated by their input
type Square_Mat (Size : Positive) is record -- Unconstrained discriminant
 Mat : Matrix(1 .. Size, 1 .. Size);
end record;
type Buffer (Size : Buffer_Size := 100) is record -- Default initialized
 Pos : Buffer_Size := 0;
 Value : String(1 .. Size);
end record;

Basis : Square_Mat(5); -- constrained, always 5 by 5
ILLEGAL : Square_Mat; -- illegal, a Square_Mat must be constrained

Large : Buffer(200); -- constrained, always 200 characters (explicit discriminant)
Message : Buffer; -- _unconstrained_, initially 100 characters, but can change
 -- (default discriminant value)

33 / 57

The type atlas: the composite basics II
Records IIII: variant records (similar to Sum types in OCaml…)

Ada

type Expr_Kind_Type is (Bin_Op_Plus, Bin_Op_Minus, Num); -- Enum

type Expr (Kind : Expr_Kind_Type) is record
 -- ^ The discriminant is an enumeration value
 Current_Val : Float; -- This member is here allways
 case Kind is
 when Bin_Op_Plus | Bin_Op_Minus =>
 Left, Right : Operator;
 when Num =>
 Val : Integer;
 end case;
 -- Variant part. Only one, at the end of the record definition, but can be nested
end record; -- Very similar to C/C++/Rust union types

33 / 57

The type atlas: the composite basics II
Records IIII: variant records (similar to Sum types in OCaml…)

Ada

type Expr_Kind_Type is (Bin_Op_Plus, Bin_Op_Minus, Num); -- Enum

type Expr (Kind : Expr_Kind_Type) is record
 Current_Val : Float; -- This member is here allways
 case Kind is
 when Bin_Op_Plus | Bin_Op_Minus =>
 Left, Right : Operator;
 when Num =>
 Val : Integer;
 end case;
end record; -- Very similar to C/C++/Rust union types

E : Expr := (Num, 12.0, 133);
E.Left := Some_Operation; -- Will compile but fail at runtime!

33 / 57

The type atlas: the composite basics II
Records IIII: variant records (similar to Sum types in OCaml…)

Ada

type Expr (Kind : Expr_Kind_Type) is record
 Current_Val : Float; -- This member is here allways
 case Kind is
 when Bin_Op_Plus | Bin_Op_Minus => Left, Right : Operator;
 when Num => Val : Integer;
 end case;
end record; -- Very similar to C/C++/Rust union types

E : Expr := (Num, 12);

case E.Kind is
 when Bin_Op_Plus => Eval_Expr (E.Left) + Eval_Expr (E.Right),
 when Bin_Op_Minus => Eval_Expr (E.Left) - Eval_Expr (E.Right),
 when Num => E.Val;
end case;

34 / 57

The type atlas: the composite basics II
Records V: variant records, common examples

Ada

-- Ada 83
type Option(Valid : Boolean := False) is record -- Rust: Option<Some|None>
 case Valid is
 when False => null;
 when True => Value : My_Type;
 end case;
end record;

No_Data_You_Silly : exception; -- Rust: Result<V|E>
type Result is record
 My_Resutl : My_Type := raise No_Data_You_Silly; -- Exception thrown!
end record; -- If we don't get the data, we get a spook!

35 / 57

The type atlas: the composite basics II
Records VI: record subtyping

Ada

-- All type relationships seen for simple types also apply to arrays and records!!

type My_Fixed_Buffer is new Buffer(500);

subtype My_Num_Expr is Expr(Num); -- Fixed variant record subtype

-- Subtyping of records can be useful when doing OOP and dealing with access types

36 / 57

The type atlas: the composite basics II.V
Low level aspects I: record and data representation

Ada

-- Enumeration numeric values
type UART_Baud is (b_9600, b_115200, b_921600) with Size => 2;
for UART_Baud use (b_9600 => 2#00#, b_115200 => 2#01#, b_921600 => 2#10#);

36 / 57

The type atlas: the composite basics II.V
Low level aspects I: record and data representation

Ada

-- Enumeration numeric values
type UART_Baud is (b_9600, b_115200, b_921600) with Size => 2;
for UART_Baud use (b_9600 => 2#00#, b_115200 => 2#01#, b_921600 => 2#10#);

type UART_Speed is record -- Lets say that our board has 3 UARTs
 UART1 : UART_Baud;
 UART2 : UART_Baud;
 UART3 : UART_Baud;
end record with Bit_Order => Low_Order_First, Size => 16;

36 / 57

The type atlas: the composite basics II.V
Low level aspects I: record and data representation

Ada

-- Enumeration numeric values
type UART_Baud is (b_9600, b_115200, b_921600) with Size => 2;
for UART_Baud use (b_9600 => 2#00#, b_115200 => 2#01#, b_921600 => 2#10#);
type UART_Speed is record -- Lets say that our board has 3 UARTs
 UART1 : UART_Baud;
 UART2 : UART_Baud;
 UART3 : UART_Baud;
end record with Bit_Order => Low_Order_First, Size => 16;

for UART_Speed use record -- Bit-level data layout representation!
 UART1 at 0 range 0 .. 1; -- Bit #2 and 3: reserved!
 UART2 at 0 range 4 .. 6; -- Bit #7 and 8: reserved!
 UART3 at 1 range 0 .. 1; -- Second byte, first two bits. Rest is unused
end record; -- Can your Rust do this so precisely? Can you C/C++??

36 / 57

The type atlas: the composite basics II.V
Low level aspects I: record and data representation

Ada

-- Enumeration numeric values
type UART_Baud is (b_9600, b_115200, b_921600) with Size => 2;
for UART_Baud use (b_9600 => 2#00#, b_115200 => 2#01#, b_921600 => 2#10#);
type UART_Speed is record -- Lets say that our board has 3 UARTs
 UART1 : UART_Baud; UART2 : UART_Baud; UART3 : UART_Baud;
end record with Bit_Order => Low_Order_First, Size => 16;
for UART_Speed use record -- Bit-level data layout representation!
 UART1 at 0 range 0 .. 1; -- Bit #2 and 3: reserved!
 UART2 at 0 range 4 .. 6; -- Bit #7 and 8: reserved!
 UART3 at 1 range 0 .. 1; -- Second byte, first two bits. Rest is unused
end record; -- Can your Rust, C/C++ do this so precisely??

UART_Speed_Reg : aliased UART_Speed -- Aliased as it needs to live in memory/not stack
 with Address => System'To_Address(16#8002001#), Volatile_Full_Access;

36 / 57

The type atlas: the composite basics II.V
Low level aspects I: record and data representation

Ada

type UART_Speed is record -- Lets say that our board has 3 UARTs
 UART1 : UART_Baud; UART2 : UART_Baud; UART3 : UART_Baud;
end record with Bit_Order => Low_Order_First, Size => 16;
for UART_Speed use record -- Bit-level data layout representation!
 UART1 at 0 range 0 .. 1; -- Bit #2 and 3: reserved!
 UART2 at 0 range 4 .. 6; -- Bit #7 and 8: reserved!
 UART3 at 1 range 0 .. 1; -- Second byte, first two bits. Rest is unused
end record; -- Can your Rust, C/C++ do this so precisely??

UART_Speed_Reg : aliased UART_Speed -- Aliased as it needs to live in memory/not stack
 with Address => System'To_Address(16#8002001#), Volatile_Full_Access;

UART_Speed_Reg.UART1 := b_115200; -- Note: no bit shifts, no function call, no objects!
-- No need for documentation, safe to reuse (different design -> error!)

37 / 57

The type atlas: the composite basics II.V
Low level aspects II: comparison to C/C++ & Rust

Ada
Low-level access

Low-level abstractions
Perfect mapping: high-level low-level

Readable

Formally verifiable with SPARK

37 / 57

The type atlas: the composite basics II.V
Low level aspects II: comparison to C/C++ & Rust

Ada
Low-level access

Low-level abstractions
Perfect mapping: high-level low-level

Readable

Formally verifiable with SPARK

Check out SweetAda for amazing low-level
and high-level stuff in a ton of boards and
arches (x86, ARM, RISC-V, M86K, SuperH,
MicroBlaze, NiosII…)

Example: HiFive rev B (RISC-V) Alternate Low-
Frequency Clock (LFALTCLK)

https://github.com/gabriele-galeotti/SweetAda
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247

37 / 57

The type atlas: the composite basics II.V
Low level aspects II: comparison to C/C++ & Rust

Ada
Low-level access

Low-level abstractions
Perfect mapping: high-level low-level

Readable

Formally verifiable with SPARK

Check out SweetAda for amazing low-level
and high-level stuff in a ton of boards and
arches (x86, ARM, RISC-V, M86K, SuperH,
MicroBlaze, NiosII…)

Example: HiFive rev B (RISC-V) Alternate Low-
Frequency Clock (LFALTCLK)

C/C++
Low-level access (bit fields, bit operations)

Poor low-level abstractions (get/setters, OOP)
High-level to low-level mapping is manual

Not readable

Bad typing checks

https://github.com/gabriele-galeotti/SweetAda
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247

37 / 57

The type atlas: the composite basics II.V
Low level aspects II: comparison to C/C++ & Rust

Ada
Low-level access

Low-level abstractions
Perfect mapping: high-level low-level

Readable

Formally verifiable with SPARK

Check out SweetAda for amazing low-level
and high-level stuff in a ton of boards and
arches (x86, ARM, RISC-V, M86K, SuperH,
MicroBlaze, NiosII…)

Example: HiFive rev B (RISC-V) Alternate Low-
Frequency Clock (LFALTCLK)

C/C++
Low-level access (bit fields, bit operations)

Poor low-level abstractions (get/setters, OOP)
High-level to low-level mapping is manual

Not readable

Bad typing checks

Rust
Low-level access

Poor low-level abstractions (get/setters, impl)

High-level to low-level mapping is manual

Not readable
Gooder typing checks, but unsafe , mut s…

https://github.com/gabriele-galeotti/SweetAda
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247
https://github.com/gabriele-galeotti/SweetAda/blob/c3b5d4a98b744ecfc27220c3a5c57e24b3060bef/platforms/HiFive1/hifive1.ads#L247

Before we continue…

39 / 57

Why do we care so much about data/Types?

39 / 57

Why do we care so much about data/Types?
Data is "50%" of a program. Types help us improve that

aspect!

Liquid Types

Contracts
Liquid Types

Input A

Input B

Input C

Program
(Functions &
Procedures)

Output 1

Output 2

39 / 57

Why do we care so much about data/Types?
Data is "50%" of a program. Types help us improve that

aspect!

Liquid Types

Contracts
Liquid Types

Input A

Input B

Input C

Program
(Functions &
Procedures)

Output 1

Output 2

A good data foundation is the stone on which to build everything else!

Are we done with types?

No, fuck you, more types!!!

41 / 57

The type atlas: the not so very basics I
Access types I: pointers more or less

Ada

-- Ada 83
type Int_Acc is access Integer; -- Access (pointers)!
 -- No arithmetic operations allowed!

41 / 57

The type atlas: the not so very basics I
Access types I: pointers more or less

Ada

-- Ada 83
type Int_Acc is access Integer; -- Access (pointers)!
 -- No arithmetic operations allowed!
-- Ada 05
type NN_Int_Acc is not null access Integer; -- Must never be null!
type Better_Acc is new not null Int_Acc; -- Just like with types

41 / 57

The type atlas: the not so very basics I
Access types I: pointers more or less

Ada

-- Ada 83
type Int_Acc is access Integer; -- Access (pointers)!
 -- No arithmetic operations allowed!
-- Ada 05
type NN_Int_Acc is not null access Integer; -- Must never be null!
type Better_Acc is new not null Int_Acc; -- Just like with types

My_Var_Acc : not null Int_Acc := S'Access; -- Yup, that is also possible

41 / 57

The type atlas: the not so very basics I
Access types I: pointers more or less

Ada

-- Ada 83
type Int_Acc is access Integer; -- Access (pointers)!
 -- No arithmetic operations allowed!
-- Ada 05
type NN_Int_Acc is not null access Integer; -- Must never be null!
type Better_Acc is new not null Int_Acc; -- Just like with types

My_Var_Acc : not null Int_Acc := S'Access; -- Yup, that is also possible

type Global_Int_Acc is access all Integer; -- Can point to any memory!

41 / 57

The type atlas: the not so very basics I
Access types I: pointers more or less

Ada

-- Ada 83
type Int_Acc is access Integer; -- Access (pointers)!
 -- No arithmetic operations allowed!
-- Ada 05
type NN_Int_Acc is not null access Integer; -- Must never be null!
type Better_Acc is new not null Int_Acc; -- Just like with types

My_Var_Acc : not null Int_Acc := S'Access; -- Yup, that is also possible

type Global_Int_Acc is access all Integer; -- Can point to any memory!
type Nice_Acc is access constant Integer; -- Read only access! See Rust's & vs &mut

41 / 57

The type atlas: the not so very basics I
Access types I: pointers more or less

Ada

-- Ada 83
type Int_Acc is access Integer; -- Access (pointers)!
 -- No arithmetic operations allowed!
-- Ada 05
type NN_Int_Acc is not null access Integer; -- Must never be null!
type Better_Acc is new not null Int_Acc; -- Just like with types

My_Var_Acc : not null Int_Acc := S'Access; -- Yup, that is also possible

type Global_Int_Acc is access all Integer; -- Can point to any memory!
type Nice_Acc is access constant Integer; -- Read only access! See Rust's & vs &mut

type Callback_F is access function (A: Integer) return Natural;
type Callback_P is access procedure (A: in out Integer);

42 / 57

The type atlas: the not so very basics I
Access types II: working with access

Ada

-- Allocation of memory via an access
type Int_Acc is access Integer;
Int_1, Int_2, Int_3 : Int_Acc; -- Default value is always null

42 / 57

The type atlas: the not so very basics I
Access types II: working with access

Ada

-- Allocation of memory via an access
type Int_Acc is access Integer;
Int_1, Int_2, Int_3 : Int_Acc; -- Default value is always null

Int_1 := new Integer; -- Allocate a new Int
Int_2 := new Integer'(10); -- Allocate a new Int and initialize it

42 / 57

The type atlas: the not so very basics I
Access types II: working with access

Ada

-- Allocation of memory via an access
type Int_Acc is access Integer;
Int_1, Int_2, Int_3 : Int_Acc; -- Default value is always null

Int_1 := new Integer; -- Allocate a new Int
Int_2 := new Integer'(10); -- Allocate a new Int and initialize it

Int_3 := Int_1; Int_1 := null; -- Copy the access of 1 to 3, null 1
Int_3.all := Int_2.all; -- Copy the Int value of 2 to 3
 -- null derreference causes an exception!

42 / 57

The type atlas: the not so very basics I
Access types II: working with access

Ada

-- Allocation of memory via an access
type Int_Acc is access Integer;
Int_1, Int_2, Int_3 : Int_Acc; -- Default value is always null

Int_1 := new Integer; -- Allocate a new Int
Int_2 := new Integer'(10); -- Allocate a new Int and initialize it

Int_3 := Int_1; Int_1 := null; -- Copy the access of 1 to 3, null 1
Int_3.all := Int_2.all; -- Copy the Int value of 2 to 3
 -- null derreference causes an exception!

procedure Free is new Ada.Unchecked_Deallocation -- Unchecked as it may be dangerous
 (Object => Integer, Name => Int_Acc); -- Typed deallocation, no "void*"!!
Free(Int_3); Free(Int_2); Free(Int_1); -- Deallocation nulls the values and it is safe

43 / 57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

-- Previously
Int_3 := Int_1; Int_1 := null; -- Copy the access of 1 to 3, null 1
Int_2.all := Int_1.all; -- Would throw an exception!

43 / 57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

-- Previously
Int_3 := Int_1; Int_1 := null; -- Copy the access of 1 to 3, null 1
Int_2.all := Int_1.all; -- Would throw an exception!

-- Generally we dont want to allow the copying of pointers/access!!!
-- Better memory management (less bugs), better performance (only one access!)

43 / 57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

-- Previously
Int_3 := Int_1; Int_1 := null; -- Copy the access of 1 to 3, null 1
Int_2.all := Int_1.all; -- Would throw an exception!

-- Generally we dont want to allow the copying of pointers/access!!!
-- Better memory management (less bugs), better performance (only one access!)

type Lim_Int_Acc is limited record -- Limits copying and comparison!!!!
 V : Int_Acc; -- Limited is only available for record,
end record; -- interface and private types (more on that later)

43 / 57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

Ada

-- Generally we dont want to allow the copying of pointers/access!!!
-- Better memory management (less bugs), better performance (only one access!)

type Lim_Int_Acc is limited record -- Limits copying and comparison!!!!
 V : Int_Acc; -- Limited is only available for record
end record; -- interface and private types (more on that later)

Int_4, Int_5 : Lim_Int_Acc;
Int_4.V := new Integer'(5);

Int_5 := Int_4; -- Error!! Not allowed by the compiler (custom procedure needed)
if Int_5 = Int_4 then -- Error! Comparison not allowed in limited!!

43 / 57

The type atlas: the not so very basics II
Limited types: skipping bugs and more data modelling!

There is so much more… See limited types in Learn.AdaCore

Ada

-- Generally we dont want to allow the copying of pointers/access!!!
-- Better memory management (less bugs), better performance (only one access!)

type Lim_Int_Acc is limited record -- Limits copying and comparison!!!!
 V : Int_Acc; -- Limited is only available for record
end record; -- interface and private types (more on that later)

Int_4, Int_5 : Lim_Int_Acc;
Int_4.V := new Integer'(5);

Int_5 := Int_4; -- Error!! Not allowed by the compiler (custom procedure needed)
if Int_5 = Int_4 then -- Error! Comparison not allowed in limited!!

https://learn.adacore.com/courses/advanced-ada/parts/resource_management/limited_types.html

44 / 57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

-- Ada 95
type My_Class is tagged null record; -- Just like a record with "tagged" keyword
 -- "null" here just says there is no data associated

44 / 57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

-- Ada 95
type My_Class is tagged null record; -- Just like a record with "tagged" keyword
 -- "null" here just says there is no data associated

type Derived is new My_Class with record
 A : Integer; -- This derived class has some extra added data
end record;

44 / 57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

-- Ada 95
type My_Class is tagged null record; -- Just like a record with "tagged" keyword
 -- "null" here just says there is no data associated

type Derived is new My_Class with record
 A : Integer; -- This derived class has some extra added data
end record;

Obj1 : My_Class;
Obj2 : Derived := (A => 12);
Obj3 : My_Class := Obj2; -- ERROR, different type!!

44 / 57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

-- Ada 95
type My_Class is tagged null record; -- Just like a record with "tagged" keyword
 -- "null" here just says there is no data associated

type Derived is new My_Class with record
 A : Integer; -- This derived class has some extra added data
end record;

Obj1 : My_Class;
Obj2 : Derived := (A => 12);
Obj3 : My_Class := Obj2; -- ERROR, different type!!
Obj4 : My_Class'Class := Obj2; -- Ok! Any descendant of My_Class is good
Obj5 : My_Class'Class := Obj1;

44 / 57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

type My_Class is tagged null record; -- Just like a record with "tagged" keyword
type Derived is new My_Class with record
 A : Integer; -- This derived class has some extra added data
end record;

Obj1 : My_Class;
Obj2 : Derived := (A => 12);
Obj4 : My_Class'Class := Obj2; -- Ok! Any descendant of My_Class is good
Obj5 : My_Class'Class := Obj1;

procedure Foo (Self : in out My_Class); -- Any procedure of an object is a method

overriding -- Overriding is optional
procedure Foo (Self : in out Derived); -- Ada allows overriding (more on that later)

44 / 57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

Obj1 : My_Class;
Obj2 : Derived := (A => 12);
Obj4 : My_Class'Class := Obj2; -- Ok! Any descendant of My_Class is good
Obj5 : My_Class'Class := Obj1;

procedure Foo (Self : in out My_Class); -- Any procedure of an object is a method
procedure Foo (Self : in out Derived); -- Ada allows overriding (more on that later)

Foo(Obj1); -- Non dispatching, calls the function as normal (My_Class.Foo)
Foo(Obj2); -- Non dispatching, calls the overridden function (Derived.Foo)
Foo(Obj4); -- Dispatching, calls the overridden function (Derived.Foo)
Foo(Obj5); -- Dispatching! (My_Class.Foo)

44 / 57

The type atlas: the not so very basics III
Tagged types (OOP) I: inheritance and runtime dispatch

Ada

Obj1 : My_Class;
Obj2 : Derived := (A => 12);
Obj4 : My_Class'Class := Obj2; -- Ok! Any descendant of My_Class is good
Obj5 : My_Class'Class := Obj1;

procedure Foo (Self : in out My_Class); -- Any procedure of an object is a method
procedure Foo (Self : in out Derived); -- Ada allows overriding (more on that later)

Obj1.Foo; -- Non dispatching, calls the function as normal (My_Class.Foo)
Obj2.Foo; -- Non dispatching, calls the overridden function (Derived.Foo)
Obj4.Foo; -- Dispatching, calls the overridden function (Derived.Foo)
Obj5.Foo; -- Dispatching! (My_Class.Foo)
-- Dot notation only available for tagged types
-- There is a proposal to enable it on normal types). See GNAT language extensions!

45 / 57

The type atlas: the not so very basics III
Tagged types II: abstract data types and interfaces

Ada

-- Ada 95: abstract types/procedures cannot be used directly
type Set is abstract tagged null record; -- Abstract is meant to serve as ancestor
function Union(Left, Right : Set) return Set is abstract; -- Meant to be overridden

45 / 57

The type atlas: the not so very basics III
Tagged types II: abstract data types and interfaces

Ada

-- Ada 95: abstract types/procedures cannot be used directly
type Set is abstract tagged null record; -- Abstract is meant to serve as ancestor
function Union(Left, Right : Set) return Set is abstract; -- Meant to be overridden

-- Ada 05: interfaces are abstract types/Objects ala Java
type Queue is limited interface; -- there are protected, task, limited and
 -- syncronized interfaces. More on that (much) later
type Synchronized_Queue is synchronized interface and Queue; -- Multiple inheritance!

45 / 57

The type atlas: the not so very basics III
Tagged types II: abstract data types and interfaces

Ada

-- Ada 95: abstract types/procedures cannot be used directly
type Set is abstract tagged null record; -- Abstract is meant to serve as ancestor
function Union(Left, Right : Set) return Set is abstract; -- Meant to be overridden

-- Ada 05: interfaces are abstract types/Objects ala Java
type Queue is limited interface; -- there are protected, task, limited and
 -- syncronized interfaces. More on that (much) later
type Synchronized_Queue is synchronized interface and Queue; -- Multiple inheritance!

-- Another example, creating an API to access Devices and get data out
type Serial_Device is task interface;
procedure Read (Dev : in Serial_Device; C : out Character) is abstract;

45 / 57

The type atlas: the not so very basics III
Tagged types II: abstract data types and interfaces

Recomended read: Ada 2005 rationale (interfaces)

Ada

-- Ada 95: abstract types/procedures cannot be used directly
type Set is abstract tagged null record; -- Abstract is meant to serve as ancestor
function Union(Left, Right : Set) return Set is abstract; -- Meant to be overridden

-- Ada 05: interfaces are abstract types/Objects ala Java
type Queue is limited interface; -- there are protected, task, limited and
 -- syncronized interfaces. More on that (much) later
type Synchronized_Queue is synchronized interface and Queue; -- Multiple inheritance!

-- Another example, creating an API to access Devices and get data out
type Serial_Device is task interface;
procedure Read (Dev : in Serial_Device; C : out Character) is abstract;

https://www.adaic.org/resources/add_content/standards/05rat/html/Rat-2-4.html

46 / 57

The type atlas: the not so very basics III
Tagged types III: where is the encapsulation???

Ada’s modular nature for the win!!

More on packages later

Ada

-- Ada's package system is used for encapsulation
package Person is
 type Object is tagged private;
 procedure Display (O : Object);
private
 type Object is tagged
 record
 Name : String (1 .. 30);
 Gender : Gender_Type;
 end record;
end Person;

47 / 57

The type atlas: the not so very basics IIII
Controlled types (akin to RAII in C++): automatic
management of data

Ada

with Ada.Finalization; -- We need to import the library to gain access to controlled

type T is new Ada.Finalization.Controlled with ... record; -- Add data to the type

procedure Initialize (E : in out T); -- Called after initializing the data
procedure Adjust (E : in out T); -- Called every time the data is modified
procedure Finalize (E : in out T); -- Called before the data is deallocated

-- Controlled types are great to encapsulate access, file handling
-- ease use of complex data or critical data adquisition

47 / 57

The type atlas: the not so very basics IIII
Controlled types (akin to RAII in C++): automatic
management of data

There is so much more… See controlled types in Learn.AdaCore.
Also, there is Limited_Controlled . For SPARK see lightweight finalization

Ada

with Ada.Finalization; -- We need to import the library to gain access to controlled

type T is new Ada.Finalization.Controlled with ... record; -- Add data to the type

procedure Initialize (E : in out T); -- Called after initializing the data
procedure Adjust (E : in out T); -- Called every time the data is modified
procedure Finalize (E : in out T); -- Called before the data is deallocated

-- Controlled types are great to encapsulate access, file handling
-- ease use of complex data or critical data adquisition

https://learn.adacore.com/courses/advanced-ada/parts/resource_management/controlled_types.html
https://www.adacore.com/blog/gnat-pro-25-new-features-platforms-and-tools

48 / 57

The type atlas: more types in future sections

We still have not seen…
private types packages

task types tasking

protected types tasking

exception "types" exceptions

48 / 57

The type atlas: more types in future sections

We still have not seen…
private types packages

task types tasking

protected types tasking

exception "types" exceptions

Types matter, it is not just
Ada

JS TypeScript
Python annotated Python

Rust’s efforts in better typing

C++ efforts in better types and restrictions

48 / 57

The type atlas: more types in future sections

We still have not seen…
private types packages

task types tasking

protected types tasking

exception "types" exceptions

Types matter, it is not just
Ada

JS TypeScript
Python annotated Python

Rust’s efforts in better typing

C++ efforts in better types and restrictions

Remeber
Data matters

Model your problem space 50% solved
problem

Leverage type relationships

Leverage attributes and aspects!
They are incredibly powerful

Good types make your code more readable and

self-documenting

Good data modelling (types) allows for much
easier formal verification (SPARK)

49 / 57

Functions, procedures and exceptions

50 / 57

Packages

51 / 57

Generics

52 / 57

Tasks

53 / 57

Liquid types, contracts and proves! Fuck yeah!

54 / 57

Going beyond, more resources

55 / 57

Ada also sucks balls

56 / 57

Thanks to…
Mona Sans & Monaspace Neon fonts

The wider Ada community
The sli.dev presentation engine

The wider open source (libre) software community

My fucking self
Zemfira for being a cool girl

https://github.com/mona-sans
https://monaspace.githubnext.com/
https://sli.dev/

Thank you!
Questions?

